Abstract
Curculigosides A and B, two of the phyto-constituents of the medicinal plant Curculigo orchioides gatern, were isolated. The binding properties of these curculigosides with β-cyclodextrin, and their interaction with bovine serum albumin in free and β-cyclodextrin-complexed forms, were studied using fluorescence spectroscopy. The stoichiometry and binding constants of these complexes together with their binding modes are reported. Both of the curculigoside–cyclodextrin complexes are found to bind more weakly to the bovine serum albumin molecule than their free forms. The difference in the binding strengths of curculigoside A and curculigoside B with cyclodextrin makes a difference in their binding with bovine serum albumin.
Similar content being viewed by others
References
Dennis, M.S., Zhang, M., Meng, Y.G., Kadkhodayan, M., Kirchhofer, D., Combs, D., Damico, L.A.: Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 277, 35035–35043 (2002)
Hansen, U.K.: Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 33, 17–53 (1981)
Kaldas, M.I., Walle, U.K., Woude, H.V., McMillan, J.M., Walle, J.: Covalent binding of the flavonoid quercetin to human serum albumin. J. Agric. Food Chem. 53, 4194–4197 (2005)
Kriko, A., Kveder, M., Slavko Pear, S., Pifat, G.: A study of caffeine binding to human serum albumin. Croat. Chem. Acta 78, 71–77 (2005)
Nagataki, S., Matsunaga, I.: Binding of fluorescein monoglucuronide to human serum albumin. Investig. Ophthalmol. Vis. Sci. 26, 1175–1178 (2006)
Solt, K., Johansson, J.S.: Binding of the active metabolite of chloral hydrate, 2,2,2-trichloroethanol, to serum albumin demonstrated using tryptophan fluorescence quenching. Pharmacology 64, 245–251 (2002)
Pignatelli, P., Pulcinelli, F.M., Celestini, A., Lenti, L., Ghiselli, A., Gazzaniga, P.P., Violi, P.: The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am. J. Clin. Nutr. 72, 1150–1155 (2000)
Bari, L.D., Ripoli, S., Pradhan, S., Salvadori, P.: Interactions between quercetin and warfarin for albumin binding: a new eye on food/drug interference. Chirality 22, 593–596 (2010)
Lorrain, B., Dufour, C., Dangles, O.: Influence of serum albumin and the flavonol quercetin on the peroxidase activity of metmyoglobin. Free Radic. Biol. Med. 48, 1162–1172 (2010)
Bender, M.L., Komiyama, M.: Cyclodextrin Chemistry, p. 233. Springer, Berlin (1978)
Kim, H., Kim, H.-W., Jung, S.: Aqueous solubility enhancement of some flavones by complexation with cyclodextrins. Bull. Korean Chem. Soc. 29, 590–594 (2008)
Szejtli, J.: Cyclodextrin Technology, pp. 155–167. Kluwer, Dordrecht (1988)
Christoff, M., Okano, L.T., Bohne, C.: Dynamics of complexation of flavone and chromone to β-cyclodextrin. J. Photochem. Photobiol. A, Chem. 134, 169–176 (2000)
Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev., Drug Discov. 3, 1023–1035 (2004)
Jang, J., Yaksh, T.L., Hill, H.F.: Use of 2-hydroxypropyl-beta-cyclodextrin as an intra-thecal drug vehicle with opioids. J. Pharmcol. Exp. Ther. 261, 592–600 (1992)
Loftsson, T.X., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)
Srichana, T., Suedee, R., Reanmongkol, W.: Cyclodextrin as a potential drug carrier in salbutamol dry powder aerosols: the in-vitro deposition and toxicity studies of the complexes. Respir. Med. 95, 513–519 (2001)
Skiba, M., Bounoure, F., Barbot, C., Arnaud, P., Skiba, M.: Development of cyclodextrin microspheres for pulmonary drug delivery. J. Pharm. Pharm. Sci. 8, 409–418 (2005)
Bilensoy, E., Gurkaynak, O., Ertan, M., Sen, M., Hincal, A.A.: Development of non-surfactant cyclodextrin nanoparticles loaded with anticancer drug paclitaxel. J. Pharm. Sci. 97, 223–235 (2008)
Enoch, I.M.V., Swaminathan, M.: Flourimetric and prototropic studies on the inclusion complexation of 2-amino and 4-aminodiphenyl ethers with β-cyclodextrin: unusual behavior of 4-aminodiphenyl ether. J. Lumin. 127, 713–720 (2007)
Enoch, I.M.V., Rajamohan, R., Swaminathan, M.: Fluorimetric and prototropic studies on the inclusion complexation of 3,3′-diaminodiphenylsulphone with β-cyclodextrin and its unusual behavior. Spectrochim. Acta A 77, 473–477 (2010)
Enoch, I.M.V., Swaminathan, M.: Stoichiometrically different inclusion complexes of 2-aminofluorene and 2-amino-9-hydroxyfluorene in β-cyclodextrin: a spectrofluorimetric study. J. Fluoresc. 16, 694–704 (2006)
Szejtli, J.: Past, present, and future of cyclodextrin research. Pure Appl. Chem. 76, 1825–1845 (2004)
Kalyanasundaram, K.: Photochemistry in Micro-heterogeneous Systems, p. 158. Academic Press, Orlando (1987)
Li, D., Zhu, J., Jin, J., Yao, X.: Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and modeling. J. Mol. Struct. 846, 34–41 (2007)
Kirtikar, K.R., Basu, B.D.: In: Blatter, E., Caius, J.F., Mhaekar, K.S., Singh, M.P. (eds.) Indian Medicinal Plants, vol. IV, pp. 2469–2478, New Delhi (2007)
Bhamare, P.B.: Traditional knowledge of plants for skin ailments of Dhule and Nandurbar districts, Maharashtra, India. J. Phytol. Res. 11, 196–198 (1998)
Rajagopalan, K., Sivarajan, V.V., Varier, P.R.: In: Warrier, P.K., Ramamurthy, C. (eds.) Curculigo Orchioides, Indian Medicinal Plants, vol. 2, pp. 245–248. Orient Longman, Madras (1994)
Liu, Y., Liu, Y., Guo, R.: Insights into cyclodextrin-modulated interactions between protein and surfactant at specific and nonspecific binding stages. J. Colloid Interface Sci. 351, 180–189 (2010)
Gao, H., Wang, Y.-N., Fan, Y.-G., Ma, J.-B.: Interactions of some modified mono- and bis-β-cyclodextrins with bovine serum albumin. Bioorg. Med. Chem. 14, 131–137 (2006)
Zhang, Y.Z., Dai, J., Xiang, X., Li, W.W., Liu, Y.: Studies on the interaction between benzidine and bovine serum albumin by spectroscopic methods. Mol. Biol. Rep. 37, 1541–1549 (2009)
Togashi, D.M., Ryder, A.G.: A fluorescence analysis of ANS bound to bovine serum albumin: binding properties revisited by using energy transfer. J. Fluoresc. 18, 519–526 (2008)
Silva, D., Cortez, C.M., Louro, S.R.W.: Quenching of the intrinsic fluorescence of bovine serum albumin by chlorpromazine and hemin. Braz. J. Med. Biol. Res. 37, 963–968 (2004)
Tian, J., Liu, J., Hu, Z., Chen, X.: Binding of scutellarin to albumin using tryptophan fluorescence quenching, CD and FT-IR spectra. Am. J. Immunol. 1, 21–23 (2005)
Avdulov, N.A., Chochina, S.V., Daragan, V.A., Schroeder, F., Mayo, K.H., Wood, W.G.: Direct binding of ethanol to bovine serum albumin: a fluorescent and 13C NMR multiplet relaxation study. Biochemistry 35, 340–347 (1996)
Zhang, W., Han, B., Zhao, S., Ge, F., Xiong, X., Chen, D., Liu, D., Chen, C.: Study on the interaction between theasinesin and bovine serum albumin by fluorescence method. Anal. Lett. 43, 289–299 (2010)
Liu, R., Yang, J., Ha, C.-E., Bhagavan, N.V., Eckenhoff, R.G.: Truncated human serum albumin retains general anaesthetic binding activity. Biochem. J. 388, 39–45 (2005)
Johansson, J.S., Eckenhoff, R.G., Dutton, L.P.: Binding of halothane to serum albumin: relevance to theories of narcosis. Anesthesiology 83, 1385–1391 (1995)
Wang, Y., Cheng, Y., Sun, H.F.: Interaction of nicotine and bovine serum albumin. Chin. Chem. Lett. 11, 247–250 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sudha, N., Enoch, I.M.V. Interaction of Curculigosides and Their β-Cyclodextrin Complexes with Bovine Serum Albumin: A Fluorescence Spectroscopic Study. J Solution Chem 40, 1755–1768 (2011). https://doi.org/10.1007/s10953-011-9750-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-011-9750-y