Skip to main content
Log in

Interaction of Curculigosides and Their β-Cyclodextrin Complexes with Bovine Serum Albumin: A Fluorescence Spectroscopic Study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Curculigosides A and B, two of the phyto-constituents of the medicinal plant Curculigo orchioides gatern, were isolated. The binding properties of these curculigosides with β-cyclodextrin, and their interaction with bovine serum albumin in free and β-cyclodextrin-complexed forms, were studied using fluorescence spectroscopy. The stoichiometry and binding constants of these complexes together with their binding modes are reported. Both of the curculigoside–cyclodextrin complexes are found to bind more weakly to the bovine serum albumin molecule than their free forms. The difference in the binding strengths of curculigoside A and curculigoside B with cyclodextrin makes a difference in their binding with bovine serum albumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dennis, M.S., Zhang, M., Meng, Y.G., Kadkhodayan, M., Kirchhofer, D., Combs, D., Damico, L.A.: Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 277, 35035–35043 (2002)

    Article  CAS  Google Scholar 

  2. Hansen, U.K.: Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 33, 17–53 (1981)

    Google Scholar 

  3. Kaldas, M.I., Walle, U.K., Woude, H.V., McMillan, J.M., Walle, J.: Covalent binding of the flavonoid quercetin to human serum albumin. J. Agric. Food Chem. 53, 4194–4197 (2005)

    Article  CAS  Google Scholar 

  4. Kriko, A., Kveder, M., Slavko Pear, S., Pifat, G.: A study of caffeine binding to human serum albumin. Croat. Chem. Acta 78, 71–77 (2005)

    Google Scholar 

  5. Nagataki, S., Matsunaga, I.: Binding of fluorescein monoglucuronide to human serum albumin. Investig. Ophthalmol. Vis. Sci. 26, 1175–1178 (2006)

    Google Scholar 

  6. Solt, K., Johansson, J.S.: Binding of the active metabolite of chloral hydrate, 2,2,2-trichloroethanol, to serum albumin demonstrated using tryptophan fluorescence quenching. Pharmacology 64, 245–251 (2002)

    Article  Google Scholar 

  7. Pignatelli, P., Pulcinelli, F.M., Celestini, A., Lenti, L., Ghiselli, A., Gazzaniga, P.P., Violi, P.: The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am. J. Clin. Nutr. 72, 1150–1155 (2000)

    CAS  Google Scholar 

  8. Bari, L.D., Ripoli, S., Pradhan, S., Salvadori, P.: Interactions between quercetin and warfarin for albumin binding: a new eye on food/drug interference. Chirality 22, 593–596 (2010)

    Google Scholar 

  9. Lorrain, B., Dufour, C., Dangles, O.: Influence of serum albumin and the flavonol quercetin on the peroxidase activity of metmyoglobin. Free Radic. Biol. Med. 48, 1162–1172 (2010)

    Article  CAS  Google Scholar 

  10. Bender, M.L., Komiyama, M.: Cyclodextrin Chemistry, p. 233. Springer, Berlin (1978)

    Book  Google Scholar 

  11. Kim, H., Kim, H.-W., Jung, S.: Aqueous solubility enhancement of some flavones by complexation with cyclodextrins. Bull. Korean Chem. Soc. 29, 590–594 (2008)

    Article  CAS  Google Scholar 

  12. Szejtli, J.: Cyclodextrin Technology, pp. 155–167. Kluwer, Dordrecht (1988)

    Google Scholar 

  13. Christoff, M., Okano, L.T., Bohne, C.: Dynamics of complexation of flavone and chromone to β-cyclodextrin. J. Photochem. Photobiol. A, Chem. 134, 169–176 (2000)

    Article  CAS  Google Scholar 

  14. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev., Drug Discov. 3, 1023–1035 (2004)

    Article  CAS  Google Scholar 

  15. Jang, J., Yaksh, T.L., Hill, H.F.: Use of 2-hydroxypropyl-beta-cyclodextrin as an intra-thecal drug vehicle with opioids. J. Pharmcol. Exp. Ther. 261, 592–600 (1992)

    CAS  Google Scholar 

  16. Loftsson, T.X., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  17. Srichana, T., Suedee, R., Reanmongkol, W.: Cyclodextrin as a potential drug carrier in salbutamol dry powder aerosols: the in-vitro deposition and toxicity studies of the complexes. Respir. Med. 95, 513–519 (2001)

    Article  CAS  Google Scholar 

  18. Skiba, M., Bounoure, F., Barbot, C., Arnaud, P., Skiba, M.: Development of cyclodextrin microspheres for pulmonary drug delivery. J. Pharm. Pharm. Sci. 8, 409–418 (2005)

    CAS  Google Scholar 

  19. Bilensoy, E., Gurkaynak, O., Ertan, M., Sen, M., Hincal, A.A.: Development of non-surfactant cyclodextrin nanoparticles loaded with anticancer drug paclitaxel. J. Pharm. Sci. 97, 223–235 (2008)

    Article  Google Scholar 

  20. Enoch, I.M.V., Swaminathan, M.: Flourimetric and prototropic studies on the inclusion complexation of 2-amino and 4-aminodiphenyl ethers with β-cyclodextrin: unusual behavior of 4-aminodiphenyl ether. J. Lumin. 127, 713–720 (2007)

    Article  CAS  Google Scholar 

  21. Enoch, I.M.V., Rajamohan, R., Swaminathan, M.: Fluorimetric and prototropic studies on the inclusion complexation of 3,3′-diaminodiphenylsulphone with β-cyclodextrin and its unusual behavior. Spectrochim. Acta A 77, 473–477 (2010)

    Article  Google Scholar 

  22. Enoch, I.M.V., Swaminathan, M.: Stoichiometrically different inclusion complexes of 2-aminofluorene and 2-amino-9-hydroxyfluorene in β-cyclodextrin: a spectrofluorimetric study. J. Fluoresc. 16, 694–704 (2006)

    Google Scholar 

  23. Szejtli, J.: Past, present, and future of cyclodextrin research. Pure Appl. Chem. 76, 1825–1845 (2004)

    Article  CAS  Google Scholar 

  24. Kalyanasundaram, K.: Photochemistry in Micro-heterogeneous Systems, p. 158. Academic Press, Orlando (1987)

    Google Scholar 

  25. Li, D., Zhu, J., Jin, J., Yao, X.: Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and modeling. J. Mol. Struct. 846, 34–41 (2007)

    Article  CAS  Google Scholar 

  26. Kirtikar, K.R., Basu, B.D.: In: Blatter, E., Caius, J.F., Mhaekar, K.S., Singh, M.P. (eds.) Indian Medicinal Plants, vol. IV, pp. 2469–2478, New Delhi (2007)

    Google Scholar 

  27. Bhamare, P.B.: Traditional knowledge of plants for skin ailments of Dhule and Nandurbar districts, Maharashtra, India. J. Phytol. Res. 11, 196–198 (1998)

    Google Scholar 

  28. Rajagopalan, K., Sivarajan, V.V., Varier, P.R.: In: Warrier, P.K., Ramamurthy, C. (eds.) Curculigo Orchioides, Indian Medicinal Plants, vol. 2, pp. 245–248. Orient Longman, Madras (1994)

    Google Scholar 

  29. Liu, Y., Liu, Y., Guo, R.: Insights into cyclodextrin-modulated interactions between protein and surfactant at specific and nonspecific binding stages. J. Colloid Interface Sci. 351, 180–189 (2010)

    Article  CAS  Google Scholar 

  30. Gao, H., Wang, Y.-N., Fan, Y.-G., Ma, J.-B.: Interactions of some modified mono- and bis-β-cyclodextrins with bovine serum albumin. Bioorg. Med. Chem. 14, 131–137 (2006)

    Article  CAS  Google Scholar 

  31. Zhang, Y.Z., Dai, J., Xiang, X., Li, W.W., Liu, Y.: Studies on the interaction between benzidine and bovine serum albumin by spectroscopic methods. Mol. Biol. Rep. 37, 1541–1549 (2009)

    Article  Google Scholar 

  32. Togashi, D.M., Ryder, A.G.: A fluorescence analysis of ANS bound to bovine serum albumin: binding properties revisited by using energy transfer. J. Fluoresc. 18, 519–526 (2008)

    Article  CAS  Google Scholar 

  33. Silva, D., Cortez, C.M., Louro, S.R.W.: Quenching of the intrinsic fluorescence of bovine serum albumin by chlorpromazine and hemin. Braz. J. Med. Biol. Res. 37, 963–968 (2004)

    CAS  Google Scholar 

  34. Tian, J., Liu, J., Hu, Z., Chen, X.: Binding of scutellarin to albumin using tryptophan fluorescence quenching, CD and FT-IR spectra. Am. J. Immunol. 1, 21–23 (2005)

    Article  CAS  Google Scholar 

  35. Avdulov, N.A., Chochina, S.V., Daragan, V.A., Schroeder, F., Mayo, K.H., Wood, W.G.: Direct binding of ethanol to bovine serum albumin: a fluorescent and 13C NMR multiplet relaxation study. Biochemistry 35, 340–347 (1996)

    Article  CAS  Google Scholar 

  36. Zhang, W., Han, B., Zhao, S., Ge, F., Xiong, X., Chen, D., Liu, D., Chen, C.: Study on the interaction between theasinesin and bovine serum albumin by fluorescence method. Anal. Lett. 43, 289–299 (2010)

    Article  CAS  Google Scholar 

  37. Liu, R., Yang, J., Ha, C.-E., Bhagavan, N.V., Eckenhoff, R.G.: Truncated human serum albumin retains general anaesthetic binding activity. Biochem. J. 388, 39–45 (2005)

    Article  CAS  Google Scholar 

  38. Johansson, J.S., Eckenhoff, R.G., Dutton, L.P.: Binding of halothane to serum albumin: relevance to theories of narcosis. Anesthesiology 83, 1385–1391 (1995)

    Article  Google Scholar 

  39. Wang, Y., Cheng, Y., Sun, H.F.: Interaction of nicotine and bovine serum albumin. Chin. Chem. Lett. 11, 247–250 (2000)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel M. V. Enoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudha, N., Enoch, I.M.V. Interaction of Curculigosides and Their β-Cyclodextrin Complexes with Bovine Serum Albumin: A Fluorescence Spectroscopic Study. J Solution Chem 40, 1755–1768 (2011). https://doi.org/10.1007/s10953-011-9750-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9750-y

Keywords

Navigation