Skip to main content
Log in

New Method for Theoretical Spinodals Corresponding to Ternary Solutions with an Amphiphile Component

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A new method is presented to obtain a theoretical spinodal for ternary solutions with an amphiphile component. This method uses a generalized Wheeler-Widom model representing the ternary solution, and considers local fitting conditions with the experimental binodal, imposing that the theoretical binodal must pass through a point on the experimental binodal, and also that the slope of the theoretical binodal has to be as close as possible to the slope of the representative experimental binodal. Using the previously specified fitting conditions, the corresponding spinodal is derived. The results are in agreement with an older method of local fitting between the generalized Wheeler-Widom model and the experimental data, where the fitting condition implied the coincidence of the theoretical tie-line with the experimental tie-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novàk, J.P., Matous̆, J., Pick, J.: Liquid-Liquid Equilibria, pp. 276–279. Academia, Prague (1987)

    Google Scholar 

  2. Prausnitz, J.M., Lichtenthaler, R.N., Gomez de Azevedo, E.: Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  3. Drzaic, P.S.: Liquid Crystal Dispersion. World Scientific, Singapore (1995)

    Google Scholar 

  4. Smith, T.E., Bonner, R.F.: Propyl alcohol–propyl acetate–water. Solubility data at 20 C and 35 C. Ind. Eng. Chem. 42(5), 896–898 (1950)

    Article  CAS  Google Scholar 

  5. Newsham, D.M.T., Ng, S.B.: Liquid–liquid equilibriums in mixtures of water, propyl alcohol, and butyl alcohol. J. Chem. Eng. Data 17, 205–207 (1972)

    Article  CAS  Google Scholar 

  6. Haddad, P.O., Edmister, W.C.: Phase equilibriums in acetic acid–diethylketone–water system. J. Chem. Eng. Data 17, 275–278 (1972)

    Article  CAS  Google Scholar 

  7. Stoicescu, C., Iulian, O., Isopescu, R.: Liquid-liquid phase equilibria of (1-propanol + water + n-alcohol) ternary systems at 294.15 K. I. 1-propanol + water + 1-butanol or 1-pentanol or 1-hexanol. Rev. Roum. Chim. 56(5), 553–560 (2011)

    Google Scholar 

  8. Flemr, V.: Excess Gibbs energy equations based on local composition concepts. Collect. Czechoslov. Chem. Commun. 41(11), 3347–3349 (1976)

    CAS  Google Scholar 

  9. McDermott, C., Ashton, N.: Note on the definition of local composition. Fluid Phase Equilib. 1(1), 33–34 (1977)

    Article  CAS  Google Scholar 

  10. Wheeler, J.C., Widom, B.: Phase transitions and critical points in a model three-component system. J. Am. Chem. Soc. 90, 3064–3071 (1968)

    Article  CAS  Google Scholar 

  11. Barsan, V.: The quartic oscillator in an external field and the statistical physics of highly anisotropic solids. Philos. Mag. 91, 477–488 (2010)

    Article  Google Scholar 

  12. Barsan, V.: The chain of classical anharmonic oscillators in an external field. Rom. Rep. Phys. 62, 219–228 (2011)

    Google Scholar 

  13. Huckaby, D.A., Shinmi, M.: Exact solution of a three-component solution in the honeycomb lattice. J. Stat. Phys. 48, 135–144 (1986)

    Article  Google Scholar 

  14. Strout, D.L., Huckaby, D.A., Wu, F.Y.: An exactly solvable model ternary solution with three-body interactions. Physica A 173, 60–71 (1991)

    Article  CAS  Google Scholar 

  15. Buzatu, F.D., Huckaby, D.A.: An exactly solvable model ternary solution with three-body interactions. Physica A 299, 427–440 (2001)

    Article  Google Scholar 

  16. Buzatu, F.D., Buzatu, D., Albright, J.G.: Spinodal curve of a model ternary solution. J. Solution Chem. 30, 969–983 (2001)

    Article  CAS  Google Scholar 

  17. Buzatu, F.D., Lungu, R.P., Huckaby, D.A.: An exactly solvable model for a ternary solution with three-body interactions and orientationally dependent bonding. J. Chem. Phys. 121, 6195–6206 (2004)

    Article  CAS  Google Scholar 

  18. Lungu, R.P., Huckaby, D.A., Buzatu, F.D.: Phase separation in an exactly solvable model binary solution with three-body interactions and intermolecular bonding. Phys. Rev. E 73, 021508 (2006)

    Article  Google Scholar 

  19. Lungu, R.P., Huckaby, D.A.: The microscopic structure of an exactly solvable model binary solution that exhibits two closed loops in the phase diagram. J. Chem. Phys. 129, 034505 (2008)

    Article  Google Scholar 

  20. Buzatu, D., Buzatu, F.D., Paduano, L., Sartorio, R.: Diffusion coefficients for the ternary system water + chloroform + acetic acid at 25 C. J. Solution Chem. 36, 1373–1384 (2007)

    Article  CAS  Google Scholar 

  21. Buzatu, F.D., Lungu, R.P., Buzatu, D., Sartorio, R., Paduano, L.: Spinodal composition of the system water + chloroform + acetic acid at 25 C. J. Solution Chem. 38, 403–415 (2009)

    Article  CAS  Google Scholar 

  22. Buzatu, D., Buzatu, F.D., Lungu, R.P., Paduano, L., Sartorio, R.: On the determination of the spinodal curve for the system water + chloroform + acetic acid from the mutual diffusion coefficient. Rom. J. Phys. 55(3–4), 342–351 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Radu P. Lungu or Roberto Sartorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lungu, R.P., Sartorio, R. & Buzatu, F.D. New Method for Theoretical Spinodals Corresponding to Ternary Solutions with an Amphiphile Component. J Solution Chem 40, 1687–1700 (2011). https://doi.org/10.1007/s10953-011-9749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9749-4

Keywords

Navigation