Skip to main content
Log in

Solution Properties of Ternary D-Glucose + 1-Ethyl-3-methylimidazolium Ethyl Sulfate + Water Solutions at 298.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The effect of an ionic liquid, 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIm]ESO4), on the thermophysical properties of aqueous D-glucose solutions including density, viscosity, and electrical conductivity have been investigated at 298.15 K. Using these properties, the apparent molar volumes, V φ , the viscosity B-coefficients and the molar conductivities, Λ m, have been computed for the ternary D-glucose + [EMIm]ESO4+water solutions. The V φ values were used to calculate the standard partial molar volumes, \(V_{\phi}^{0}\), and transfer volumes, \(\Delta_{\mathrm{tr}}V_{\phi}^{0}\), of D-glucose from water to aqueous ionic liquid solutions. These volumetric parameters, for all the solutions studied, are positive and increase monotonically with increasing the concentration of [EMIm]ESO4. These observations have been interpreted in terms of the interactions between D-glucose and ionic liquid in the aqueous solution. The viscosity data were analyzed in terms of the Jones-Dole equation to determine the values of the viscosity B-coefficients. The calculated conductometric parameters, the limiting molar conductivities, Λ 0, the association constants, K a, and the Walden products, Λ 0 η, for [EMIm]ESO4, decrease with increasing concentration of D-glucose. This trend suggests that the ions of an ionic liquid do not have the same hydrodynamic size in the presence of D-glucose molecules (ILs) and consequently provides evidence for the dehydration effect of the ionic liquid in aqueous D-glucose solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dwiatmoko, A.A., Choia, J.W., Suha, D.J., W-Suha, Y., Kungc, H.H.: Understanding the role of halogen-containing ionic liquids in the hydrolysis of cellobiose catalyzed by acid resins. Appl. Catal. A, Gen. 387, 209–214 (2010)

    Article  CAS  Google Scholar 

  2. Himmler, S., Hörmann, S., Hal, R., Schulz, P.S., Wasserscheid, P.: Transesterification of methyl sulfate and ethylsulfate ionic liquidssan environmentally benign way to synthesize long-chain and functionalized alkyl sulfate ionic liquids. Green Chem. 8, 887–894 (2006)

    Article  CAS  Google Scholar 

  3. Z-Moattar, M.T., Shekaari, H.: Apparent molar volume and isentropic compressibility of ionic liquid 1-butyl-3-methylimidazolium bromide in water, methanol, and ethanol at T=(298.15 to 318.15) K. J. Chem. Thermodyn. 37, 1029–1035 (2005)

    Article  Google Scholar 

  4. Vasiltsova, T.V., Verevkin, S.P., Bich, E., Heintz, A., B-Lukasik, R., Domanska, U.: Thermodynamic properties of mixtures containing ionic liquids. 7. Activity coefficients of aliphatic and aromatic esters and benzylamine in 1-methyl-3-ethylimidazolium bis(trifluoromethylsulfonyl) imide using the transpiration method. J. Chem. Eng. Data 51, 213–218 (2006)

    Article  CAS  Google Scholar 

  5. Vasiltsova, T.V., Verevkin, S.P., Bich, E., Heintz, A., B-Lukasik, R., Domanska, U.: Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients of ethers and alcohols in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) imide using the transpiration method. J. Chem. Eng. Data 50, 142–148 (2005)

    Article  CAS  Google Scholar 

  6. Lima, S., Neves, P., Antunes, M.M., Pillinger, M., Ignatyev, N., Valente, A.A.: Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl. Catal. A, Gen. 363, 93–99 (2009)

    Article  CAS  Google Scholar 

  7. Li, C., Zhang, Z., Zhao, Z.K.: Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Lett. 50, 5403–5405 (2009)

    Article  CAS  Google Scholar 

  8. A-Chun, J., W-Lee, J., B-Yi, Y., S-Hong, S., H-Chung, C.: Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid. Korean J. Chem. Eng. 27, 930–935 (2010)

    Article  Google Scholar 

  9. Seoud, A.O., Koschella, A., Fidale, L.C., Dorn, S., Heinze, T.: Applications of ionic liquids in carbohydrate chemistry: A window of opportunities. Biomacromolecules 8, 2629–2647 (2007)

    Article  Google Scholar 

  10. Chao, P.Y., Yong, L.Z., Li, L., Ji, W.J., Yong, W.H.: Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems,. Sci. China Chem. 53, 1554–1560 (2010)

    Article  Google Scholar 

  11. Lee, S.H., Nguyen, H.M., M-Koo, Y., Ha, S.H.: Ultrasound-enhanced lipase activity in the synthesis of sugar ester using ionic liquids. Process Biochem. 43, 1009–1012 (2008)

    Article  CAS  Google Scholar 

  12. Lee, S.H., Haa, S.H., Hiep, N.M., J-Changa, W., M-Koo, Y.: Lipase-catalyzed synthesis of glucose fatty acid ester using ionic liquids mixtures. J. Biotechnol. 133, 486–489 (2008)

    Article  CAS  Google Scholar 

  13. Chen, Z.G., Zhang, M.H., Gu, Z.X.: Enzymatic synthesis of sugar esters in ionic liquids. Chinese. J. Org. Chem. 27, 1448–1452 (2007)

    Google Scholar 

  14. Lee, J.S., Mayes, R.T., Luo, H., Dai, S.: Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions. Carbon 48, 3364–3368 (2010)

    Article  CAS  Google Scholar 

  15. Zeng, X., Li, X., Xing, L., Liu, X., Luo, S., Wei, W., Kong, B., Li, Y.: Electrodeposition of chitosan–ionic liquid–glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Biosens. Bioelectron. 24, 2898–2903 (2009)

    Article  CAS  Google Scholar 

  16. Li, J., Yu, J., Zhao, F., Zeng, B.: Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing. Anal. Chim. Acta 587, 33–40 (2007)

    Article  CAS  Google Scholar 

  17. Ragupathy, D., Gopalan, A.I., P-Lee, K.: Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan-ionic liquid matrix towards improved performance for a glucose sensor. Electrochem. Commun. 11, 397–401 (2009)

    Article  CAS  Google Scholar 

  18. Wu, B., Zhang, Y.M., Wang, H.P.: Aqueous biphasic systems of hydrophilic ionic liquids + sucrose for separation. J. Chem. Eng. Data 53, 983–985 (2008)

    Article  CAS  Google Scholar 

  19. Wu, B., Zhang, Y., Wang, H.: Phase behavior for ternary systems composed of ionic liquid+saccharides+water. J. Phys. Chem. B 112, 6426–6429 (2008)

    Article  CAS  Google Scholar 

  20. Chen, Y., Meng, Y., Zhang, S., Zhang, Y., Liu, X., Yang, J.: Liquid-liquid equilibria of aqueous biphasic systems composed of 1-butyl-3-methyl imidazolium tetrafluoroborate+sucrose/maltose+water. J. Chem. Eng. Data 55, 3612–3616 (2010)

    Article  CAS  Google Scholar 

  21. Zhang, Y., Zhang, S., Chen, Y., Zhang, J.: Aqueous biphasic systems composed of ionic liquid and fructose. Fluid Phase Equilib. 257, 173–176 (2007)

    Article  CAS  Google Scholar 

  22. Deng, Y., Long, T., Zhang, D., Chen, J., Gan, S.: Phase diagram of [Amim]Cl + salt aqueous biphasic systems and its application for [Amim]Cl recovery. J. Chem. Eng. Data 54, 2470–2473 (2009)

    Article  CAS  Google Scholar 

  23. Chao, P.Y., Yong, L.Z., Li, L., Ji, W.J., Yong, W.H.: Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems. Sci. China Chem. 53, 1554–1560 (2010)

    Article  Google Scholar 

  24. Zhuo, K., Wang, J., Zheng, H., Xuan, X., Zhao, Y.: Volumetric parameters of interaction of monosaccharides (D-xylose, D-arabinose, D-glucose, D-galactose) with NaI in water at 298.15 K. J. Solution Chem. 34, 155–170 (2005)

    Article  CAS  Google Scholar 

  25. Banipal, P.K., Gautam, S., Dua, S., Banipal, T.S.: Effect of ammonium salts on the volumetric and viscometric behavior of D (+)-glucose, D (−)-fructose and sucrose in aqueous solutions at 25°C. J. Solution Chem. 35, 815–844 (2006)

    Article  CAS  Google Scholar 

  26. Banipal, P.K., Chahal, A.K., Banipal, T.S.: Studies on volumetric properties of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15) K. J. Chem. Thermodyn. 41, 452–483 (2009)

    Article  CAS  Google Scholar 

  27. Banipal, P.K., Singh, V., Banipal, T.S.: Effect of sodium acetate on the volumetric behaviour of some mono-, di-, and tri-saccharides in aqueous solutions over temperature range (288.15 to 318.15) K. J. Chem. Thermodyn. 42, 90–103 (2010)

    Article  CAS  Google Scholar 

  28. Banipal, P.K., Singh, V., Kaur, G., Kaur, M., Banipal, T.S.: Thermodynamic and transport properties of some disaccharides in aqueous ammonium sulfate solutions at various temperatures. J. Chem. Eng. Data 53, 1713–1724 (2008)

    Article  CAS  Google Scholar 

  29. Banipal, P.K., Chahal nee Hundal, A.K., Banipal, T.S.: Effect of magnesium chloride (2:1 electrolyte) on the aqueous solution behavior of some saccharides over the temperature range of 288.15–318.15 K. A volumetric approach. Carbohyd. Res. 345, 2262–2271 (2010)

    Article  CAS  Google Scholar 

  30. Banipal, P.K., Banipal, T.S., Ahluwalia, J.C.: Partial molar heat capacities and volumes of transfer of some saccharides from water to aqueous sodium chloride solutions at T=298.15 K. J. Chem. Thermodyn. 34, 1825–1846 (2002)

    Article  CAS  Google Scholar 

  31. Zhuo, K., Zhang, H., Wang, Y., Liu, Q., Wang, J.: Activity coefficients and volumetric properties for the NaBr+maltose+water system at 298.15 K. J. Chem. Eng. Data 50, 1589–1595 (2005)

    Article  CAS  Google Scholar 

  32. Zhuo, K., Liu, Y., Liu, H., Wang, J.: Conductivity in NiSO4–D-glucose–water solutions at 278.15–308.15 K. Fluid Phase Equilib. 284, 50–55 (2009)

    Article  CAS  Google Scholar 

  33. Zhuo, K., Liu, G., Wang, W., Ren, Q., Wang, J.: Activity coefficients and conductivities of calcium nitrate in glucose/galactose–water mixtures at 298.15 K. Fluid Phase Equilib. 258, 78–82 (2007)

    Article  CAS  Google Scholar 

  34. Zhang, Q., Yan, Z., Wang, J., Zhang, H.: Densities, molar volumes, and isobaric expansivities of (D-glucose+hydrochloric acid+water) systems. J. Chem. Thermodyn. 38, 34–42 (2006)

    Article  Google Scholar 

  35. Holbrey, J.D., Reichert, W.M., Swatloski, R.P., Broker, G.A., Pitner, W.R., Seddon, K.R., Rogers, R.D.: Efficient, halide free synthesis of new low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethylsulfate anions. Green Chem. 4, 407–413 (2002)

    Article  CAS  Google Scholar 

  36. Krummen, M., Wasserscheid, P., Gmehling, J.: Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique. J. Chem. Eng. Data 47, 1411–1417 (2002)

    Article  CAS  Google Scholar 

  37. Pitzer, K.S., Peiper, J.C., Busey, R.H.: Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13, 1–102 (1984)

    Article  CAS  Google Scholar 

  38. Wachter, R., Barthel, J.: A method for determining the precise dependence of conductivity data on temperature. Electrochim. Acta 16, 713–721 (1971)

    Article  CAS  Google Scholar 

  39. Zamyatnin, A.A.: Amino acid, peptide, and protein volume in solution. Annu. Rev. Biophys. Bioeng. 13, 145–165 (1984)

    Article  CAS  Google Scholar 

  40. Banipal, T.S., Bhatia, A., Banipal, P.K., Singh, G., Kaur, D.: Partial molar volumes and viscosities of some amino acids in aqueous electrolyte and nonelectrolyte solutions. J. Indian Chem. Soc. 81, 126–131 (2004)

    CAS  Google Scholar 

  41. Zhuo, K., Wang, J., Yue, Y., Wang, H.: Volumetric properties for the monosaccharide (D-xylose, D-arabinose, D-glucose, D-galactose)–NaCl–water systems at 298.15 K. Carbohyd. Res. 328, 383–391 (2000)

    Article  CAS  Google Scholar 

  42. Zhuo, K., Liu, Q., Wang, Y., Ren, Q., Wang, J.: Volumetric and viscosity properties of monosaccharides in aqueous amino acid solutions at 298.15 K. J. Chem. Eng. Data 51, 919–927 (2006)

    Article  CAS  Google Scholar 

  43. Youngs, T.G.A., Hardacre, C., Holbrey, J.D.: Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: a simulation study. J. Phys. Chem. B 111, 13765–13774 (2007)

    Article  CAS  Google Scholar 

  44. Zhao, C., Ma, P., Li, J.: Partial molar volumes and viscosity B-coefficients of arginine in aqueous glucose, sucrose and L-ascorbic acid solutions at T=298.15 K. J. Chem. Thermodyn. 37, 37–42 (2005)

    Article  CAS  Google Scholar 

  45. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  46. Seuver, A.M., Mathlouthi, M.: Solution properties and solute-solvent interactions in ternary sugar–salt–water solutions. Food Chem. 122, 455–461 (2010)

    Article  Google Scholar 

  47. Zhuo, K., Liu, H., Tang, J., Chen, Y., Wang, J.: Interactions of sodium halides with sugars in water: a study of viscosity and 1H spin-lattice relaxation time. J. Phys. Chem. B 113, 13638–13644 (2009)

    Article  CAS  Google Scholar 

  48. Youngs, T.G.A., Youngs, C., Holbrey, J.D.: Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: A simulation study. J. Phys. Chem. B 111, 13765–13774 (2007)

    Article  CAS  Google Scholar 

  49. Zhao, H.: Viscosity B-coefficients and standard partial molar volumes of amino acids and their roles in interpreting the protein (enzyme) stabilization. Biophys. Chem. 122, 157–183 (2006)

    Article  CAS  Google Scholar 

  50. Barthel, J.M.G., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions. Springer, Darmstadt (1998). p. 73

    Google Scholar 

  51. Miller, D.P., Conrad, P.B., Fucito, S., Corti, H.R., de Pablo, J.J.: Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride. J. Phys. Chem. B 104, 10419–10425 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemayat Shekaari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shekaari, H., Kazempour, A. Solution Properties of Ternary D-Glucose + 1-Ethyl-3-methylimidazolium Ethyl Sulfate + Water Solutions at 298.15 K. J Solution Chem 40, 1582–1595 (2011). https://doi.org/10.1007/s10953-011-9738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9738-7

Keywords

Navigation