Skip to main content
Log in

Electrophoretic Mobilities of the Isotopes of Chloride and Bromide Ions in Aqueous Solution at 25 °C and Infinite Dilution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The electrophoretic mobilities of a few halide isotopes in aqueous solution have been evaluated at 25 °C and infinite dilution by analyzing a combination of data obtained by capillary electrophoresis (CE) and conductance data extracted from the literature. The effect of the temperature on the electrophoretic mobility has been thoroughly re-investigated to give the following temperature dependence for the chloride ion at 25 °C: 1.565%/ °C in 5×10−3 mol⋅L−1 sodium chromate + 3×10−3 mol⋅L−1 sodium borate buffer. The precise determination of the electrophoretic mobility of chloride and bromide ions, including the evaluation of their associated uncertainties, has been performed from conductance data spanning over 75 years. The electrophoretic mobilities are found to be −(79.124±0.020)×10−9 m2⋅V−1⋅s−1 for Cl and −(80.99±0.04)×10−9 m2⋅V−1⋅s−1 for Br. Thanks to the precise determination of the temperature contribution and the re-evaluation of conductance data, the following values have been found for 35Cl, 37Cl, 79Br, and 81Br (in 10−9 m2⋅V−1⋅s−1): −(79.18±0.02), −(78.95±0.06), −(81.04±0.04), and −(80.94±0.04).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avdalovic, N., Pohl, C.A., Rocklin, R.D., Stillian, J.R.: Determination of cations and anions by capillary electrophoresis combined with suppressed conductivity detection. Anal. Chem. 65, 1470–1475 (1993)

    Article  CAS  Google Scholar 

  2. Lucy, C.A., McDonald, T.L.: Separation of chloride isotopes by capillary electrophoresis based on the isotope effect on ion mobility. Anal. Chem. 67, 1074–1078 (1995)

    Article  CAS  Google Scholar 

  3. Fritz, J.S.: Determination of inorganic anions and metal cations. In: Camilleri, P. (ed.) Capillary Electrophoresis: Theory and Practice, pp. 250–272. CRC Press, Boca Raton (1998)

    Google Scholar 

  4. Aupiais, J.: Personnal communication (1996)

  5. Henley, W.H., Wilburn, R.T., Crouch, A.M., Jorgenson, J.W.: Flow counterbalanced capillary electrophoresis using packed capillary columns: resolution of enantiomers and isotopomers. Anal. Chem. 77, 7024–7031 (2005)

    Article  CAS  Google Scholar 

  6. Gas, B., Coufal, P., Jaros, M., Muzikar, J., Jelinek, I.: Optimization of background electrolytes for capillary electrophoresis I. Mathematical and computational model. J. Chromatogr. A 905, 269–279 (2001)

    Article  CAS  Google Scholar 

  7. Jaros, M., Hruska, V., Stedry, M., Zuskova, I., Gas, B.: Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster. Electrophoresis 25, 3080–3085 (2004)

    Article  CAS  Google Scholar 

  8. Jaros, M., Vcelakova, K., Zuskova, I., Gas, B.: Optimization of background electrolytes for capillary electrophoresis: II. Computer simulation and comparison with experiments. Electrophoresis 23, 2667–2677 (2002)

    Article  CAS  Google Scholar 

  9. Stedry, M., Jaros, M., Gas, B.: Eigenmobilities in background electrolytes for capillary zone electrophoresis—I. System eigenpeaks and resonance in systems with strong electrolytes. J. Chromatogr. A 960, 187–198 (2002)

    Article  CAS  Google Scholar 

  10. Stedry, M., Jaros, M., Hruska, V., Gas, B.: Eigenmobilities in background electrolytes for capillary zone electrophoresis: III. Linear theory of electromigration. Electrophoresis 25, 3071–3079 (2004)

    Article  CAS  Google Scholar 

  11. Onsager, L., Fuoss, R.M.: Irreversible processes in electrolytes. Diffusion, conductances, and viscous flow in arbitrary mixtures of strong electrolytes. J. Phys. Chem. 36, 2689–2778 (1932)

    Article  CAS  Google Scholar 

  12. Evenhuis, C.J., Guijt, R.M., Macka, M., Marriott, P.J., Haddad, P.R.: Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis. Electrophoresis 26, 4333–4344 (2005)

    Article  CAS  Google Scholar 

  13. Peterson, S.L., Nikolajsen, R.P.H., Mogensen, K.B., Kutter, J.P.: Effect of joule heating on efficiency performance for microchip-based capillary-based electrophoretic separation systems: a closer look. Electrophoresis 25, 253–269 (2004)

    Article  Google Scholar 

  14. Philippini, V., Aupiais, J., Vercouter, T., Moulin, C.: Formation of CaSO4(aq) and CaSeO4(aq) studied as a function of ionic strength and temperature by CE. Electrophoresis 30, 3582–3590 (2009)

    Article  CAS  Google Scholar 

  15. Harris, K.R., Woolf, L.A.: Correction to the article “Temperature and volume dependence of the viscosity of water and heavy water at low temperatures”. J. Chem. Eng. Data 49, 1851 (2004)

    Article  CAS  Google Scholar 

  16. Harris, K.R., Woolf, L.A.: Temperature and volume dependence of the viscosity of water and heavy water at low temperatures. J. Chem. Eng. Data 49, 1064–1069 (2004)

    Article  CAS  Google Scholar 

  17. Archer, D.G., Wang, P.: The dielectric constant of water and Debye-Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411 (1990)

    Article  CAS  Google Scholar 

  18. Isono, T.: Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, LaCl3, Na2SO4, NaNO3, NaBr, KNO3, KBr, and Cd(NO3)2. J. Chem. Eng. Data 29, 45–52 (1984)

    Article  CAS  Google Scholar 

  19. Jones, H.C., Jacobson, C.A.: The conductivity and ionization of electrolytes in aqueous solutions as conditioned by temperature, dilution, and hydrolysis. Am. Chem. J. 40, 355–410 (1908)

    CAS  Google Scholar 

  20. Hayashi, M.: Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion. Environ. Monit. Assess. 96, 119–128 (2004)

    Article  Google Scholar 

  21. Benson, G.C., Gordon, A.R.: A reinvestigation of the conductance of aqueous solutions of potassium chloride, sodium chloride, and potassium bromide at temperatures from 15° to 45°C. J. Chem. Phys. 13, 473–474 (1945)

    Article  CAS  Google Scholar 

  22. Gunning, H.E., Gordon, A.R.: The conductance and ionic mobilities for aqueous solutions of potassium and sodium chloride at temperatures from 15° to 45°C. J. Phys. Chem. 10, 126–131 (1942)

    Article  CAS  Google Scholar 

  23. Robinson, R.A., Stokes, R.H.: The variation of equivalent conductance with concentration and temperature. J. Am. Chem. Soc. 76, 1991–1994 (1954)

    Article  CAS  Google Scholar 

  24. Watkins, C., Jones, H.C.: Conductivity and dissociation of some rather unusual salts in aqueous solution. J. Am. Chem. Soc. 37, 2626–2636 (1915)

    Article  CAS  Google Scholar 

  25. Gunning, H.E., Gordon, A.R.: The conductance of aqueous solutions of potassium bromide at temperatures from 15° to 45°C, and the limiting mobility of bromide ion. J. Phys. Chem. 11, 18–20 (1943)

    Article  CAS  Google Scholar 

  26. Anderko, A., Lencka, M.M.: Computation of electrical conductivity of multicomponent aqueous systems in wide concentration and temperature ranges. Ind. Eng. Chem. Res. 36, 1932–1943 (1997)

    Article  CAS  Google Scholar 

  27. Coplen, T.B., Böhlke, J.K., De Bièvre, P., Ding, T., Holden, N.E., Hopple, J.A., Krouse, H.R., Lamberty, A., Peiser, H.S., Révész, K., Rieder, S.E., Rosman, K.J.R., Roth, E., Taylor, P.D.P., Vocke, R.D. Jr., Xiao, Y.K.: Isotope-abundance variations of selected elements. Pure Appl. Chem. 74, 1987–2017 (2002)

    Article  CAS  Google Scholar 

  28. Le Petit, G., Granier, G.: Spectrométrie Gamma Appliquée aux Échantillons de l’Environnement. TEC & DOC, Paris (2002)

    Google Scholar 

  29. Eggenkamp, H.G.M., Coleman, M.L.: The effect of aqueous diffusion on the fractionation of chlorine and bromine stable isotopes. Geochim. Cosmochim. Acta 73, 3539–3548 (2009)

    Article  CAS  Google Scholar 

  30. Richter, F.M., Mendybaev, R.A., Christensen, J.N., Hutcheon, I.D., Williams, R.W., Sturchio, N.C., Beloso, A.D.J.: Kinetic isotopic fractionation during diffusion of ionic species in water. Geochim. Cosmochim. Acta 70, 277–289 (2006)

    Article  CAS  Google Scholar 

  31. Grossman, P.D., Colburn, J.C.: Capillary Electrophoresis—Theory and Practice. Academic Press, San Diego (1992)

    Google Scholar 

  32. Peterson, N.J., Nikolajsen, R.P.H., Mogensen, K.B., Kutter, J.P.: Effect of joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: a closer look. Electrophoresis 25, 253–269 (2004)

    Article  Google Scholar 

  33. Kosmulski, M.: Surface Charging and Points of Zero Charge. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  34. Evenhuis, C.J., Guijt, R.M., Macka, M., Marriott, P.J., Haddad, P.R.: Temperature profiles and heat dissipation in capillary electrophoresis. Anal. Chem. 78, 2684–2693 (2006)

    Article  CAS  Google Scholar 

  35. Evenhuis, C.J., Guijt, R.M., Macka, M., Marriott, P.J., Haddad, P.R.: Heat production and dissipation in capillary electrophoresis. In: Landers, J.P. (ed.) Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, pp. 545–562. CRC Press, Boca Raton (2007)

    Google Scholar 

  36. De Laeter, J.R., Böhlke, J.K., De Bièvre, P., Hidaka, H., Peiser, H.S., Rosman, K.J.R., Taylor, P.D.P.: Atomic weights of the elements: review 2000. Pure Appl. Chem. 75, 683–800 (2003)

    Article  Google Scholar 

  37. Marsh, K.N.: Recommended reference materials for realization of physicochemical properties. Pure Appl. Chem. 53, 1847–1862 (1981). Section: Permittivity

    Article  Google Scholar 

  38. Ribeiro, A.C.F., Esteso, M.A., Lobo, V.M.M., Burrows, H.D., Amado, A.M., Amorim da Costa, A.M., Sobral, A.J.F.N., Azevedo, E.F.G., Ribeiro, M.A.F.: Mean distance of closest approach of ions: sodium salts in aqueous solutions. J. Mol. Liq. 128, 134–139 (2006)

    Article  CAS  Google Scholar 

  39. Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2006. National Institute of Standards and Technology, Gaithersburg (2007)

    Google Scholar 

  40. Weast, R.C., Astle, M.J., Veyer, W.H. (eds.): Handbook of Chemistry and Physics, 69th edn. CRC Press, Boca Raton (1988)

    Google Scholar 

  41. Hirokawa, T., Nishino, M., Aoki, N., Kiso, Y., Sawamoto, Y., Yagi, T., Akiyama, J.-I.: Table of isotachophoretic indices—I. Simulated qualitative and quantitative indices of 287 anionic substances in the range pH 3–10. J. Chromatogr. 271, D1–D106 (1983)

    Article  CAS  Google Scholar 

  42. Owen, B.B., Zeldes, H.: The conductance of potassium chloride, potassium bromide and potassium iodide in aqueous solutions from 5 to 55°. J. Chem. Phys. 18, 1083–1085 (1950)

    Article  CAS  Google Scholar 

  43. Hsia, K.-L., Fuoss, R.M.: Conductance of the alkali halides. XI. Cesium bromide and iodide in water at 25°. J. Am. Chem. Soc. 90, 3055–3060 (1968)

    Article  CAS  Google Scholar 

  44. Treiner, C., Justice, J.C., Fuoss, R.M.: Conductance of the alkali halides. X. The limiting conductance of the cesium ion in water at 25°. J. Phys. Chem. 68, 3886–3887 (1964)

    Article  CAS  Google Scholar 

  45. Wypych-Stasiewicz, A., Szejgis, A., Chmielewska, A., Bald, A.: Conductance studies of NaBPh4, NBu4I, NaI, NaCl, NaBr, NaClO4 and the limiting ionic conductance in water+propan-1-ol mixtures at 298.15 K. J. Mol. Liq. 130, 34–37 (2007)

    Article  CAS  Google Scholar 

  46. Kay, R.L., Evans, D.F.: The effect of solvent structure on the mobility of symmetrical ions in aqueous solution. J. Phys. Chem. 70, 2325–2335 (1966)

    Article  CAS  Google Scholar 

  47. Lange, J.: Zur Leitfähigkeit starker Elektrolyte. Z. Phys. Chem. A 188, 284–315 (1941)

    Google Scholar 

  48. Jones, G., Bickford, C.F.: The conductance of aqueous solutions as a function of the concentration. I. Potassium bromide and lanthanum chloride. J. Am. Chem. Soc. 56, 602–611 (1934)

    Article  CAS  Google Scholar 

  49. Longsworth, L.G.: Transference numbers of aqueous solutions of some electrolytes at 25° by the moving boundary method. J. Am. Chem. Soc. 57, 1185–1191 (1935)

    Article  CAS  Google Scholar 

  50. Swain, C.G., Evans, D.F.: Conductance of ions in light and heavy water at 25°. J. Am. Chem. Soc. 88, 383–390 (1966)

    Article  CAS  Google Scholar 

  51. Ritson, D.M., Hasted, J.B.: Dilectric properties of aqueous ionic solutions. Part II. J. Chem. Phys. 16, 11–21 (1948)

    CAS  Google Scholar 

  52. Spedding, F.H., Yaffe, I.S.: Conductances, transference numbers and activity coefficients of aqueous solutions of some rare earth halides at 25°. J. Am. Chem. Soc. 74, 4751–4755 (1952)

    Article  CAS  Google Scholar 

  53. Justice, J.C., Bury, R., Treiner, C.: Conductibilité des électrolytes symétriques. II. Bromure de césium dans des mélanges eau-dioxane et eau-tétrahydrofuranne à 25°C. J. Chim. Phys. 65, 1708–1722 (1968)

    CAS  Google Scholar 

  54. Lucy, C.A.: Factors affecting selectivity of inorganic anions in capillary electrophoresis. J. Chromatogr. A 850, 319–337 (1999)

    Article  CAS  Google Scholar 

  55. Kaniansky, D., Masar, M., Marak, J., Bodor, R.: Capillary electrophoresis of inorganic anions. J. Chromatogr. A 834, 133–178 (1999)

    Article  CAS  Google Scholar 

  56. Shedlovsky, T., Brown, A.S.: The electrolytic conductivity of alkaline earth chlorides in water at 25°. J. Am. Chem. Soc. 56, 1066–1071 (1934)

    Article  CAS  Google Scholar 

  57. McInnes, D.A., Shedlovsky, T., Longsworth, L.G.: The limiting equivalent conductances of several univalent ions in water at 25°. J. Am. Chem. Soc. 54, 2758–2762 (1932)

    Article  Google Scholar 

  58. Owen, B.B., Sweeton, F.H.: The conductance of hydrochloric acid in aqueous solutions from 5 to 65°. J. Am. Chem. Soc. 63, 2811–2817 (1941)

    Article  CAS  Google Scholar 

  59. Strong, L.E., Pethybridge, A.D.: Aqueous iodic acid: conductance and thermodynamics. J. Solution Chem. 16, 841–855 (1987)

    Article  CAS  Google Scholar 

  60. King, F., Spiro, M.: Transference numbers and phenomenological transport coefficients for concentrated aqueous hydrochloric acid solutions at 25 °C. J. Solution Chem. 12, 65–81 (1983)

    Article  CAS  Google Scholar 

  61. Bianchi, H., Corti, H.R., Fernandez-Prini, R.: The conductivity of dilute aqueous solutions of magnesium chloride at 25°C. J. Solution Chem. 17, 1059–1065 (1988)

    Article  CAS  Google Scholar 

  62. Chiu, Y.C., Fuoss, R.M.: Conductance of the alkali halides. XII. Sodium and potassium chlorides in water at 25°. J. Phys. Chem. 72, 4123–4129 (1968)

    Article  CAS  Google Scholar 

  63. Weingärtner, H., Müller, K.J., Hertz, H.G., Edge, V.J., Mills, R.: Unusual behavior of transport coefficients in aqueous solutions of zinc chloride at 25°C. J. Phys. Chem. 88, 2173–2178 (1984)

    Article  Google Scholar 

  64. Li, N.C.C., Brüll, W.: Conductivities studies. IV. The limiting ionic mobilities of several univalent ions at temperatures between 15 and 45°. J. Am. Chem. Soc. 64, 1635–1637 (1942)

    Article  CAS  Google Scholar 

  65. Murr, B.L. Jr., Shiner, V.J. Jr.: Precise conductance measurements and the determination of rate data. J. Am. Chem. Soc. 84, 4672–4677 (1962)

    Article  CAS  Google Scholar 

  66. Monica, M.D., Petrella, G., Sacco, A., Bufo, S.: Transference numbers in concentrated sodium chloride solutions. Electrochim. Acta 24, 1013–1017 (1979)

    Article  Google Scholar 

  67. Carman, P.C.: Transport in concentrated solutions of 1:1 electrolytes. J. Phys. Chem. 73, 1095–1105 (1969)

    Article  CAS  Google Scholar 

  68. Arevalo, A., Vivo, A., Esteso, M.A., Llorente, M.L.: Conductividades electroliticas en medios agua-etanol. II. Conductividad limite del NaCl a 25°C. An. Quím. 73, 195–199 (1977)

    CAS  Google Scholar 

  69. Justice, J.C.: Contribution à l’étude de la conductibilité des électrolytes symétriques en solutions diluées–I. J. Chim. Phys. 65, 353–367 (1968)

    CAS  Google Scholar 

  70. Davies, C.W.: The conductivity of potassium chloride solutions. J. Chem. Soc., 432–436 (1937)

  71. Kok, W.: Capillary electrophoresis: Instrumentation and operation. Chromatographia 51, 89 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Aupiais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aupiais, J. Electrophoretic Mobilities of the Isotopes of Chloride and Bromide Ions in Aqueous Solution at 25 °C and Infinite Dilution. J Solution Chem 40, 1629–1644 (2011). https://doi.org/10.1007/s10953-011-9734-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9734-y

Keywords

Navigation