Skip to main content
Log in

A General Formulation Encompassing the Effects of Salts and Micelles (Direct and Reverse) on Ionic Reactions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Given the common behavior of ionic reactions in micellar and salt solutions and in microemulsions, a general approach has been developed for the interpretation of kinetic results in these media. This approach takes as a starting point the Brønsted equation. It has been checked by employing kinetic results for cation/cation \(([\mathrm{Ru}(\mathrm{NH}_{3})_{5}\mathrm{py}^{2+}] + [\mathrm{Co}(\mathrm{NH}_{3})_{4}\mathrm{pzCO}_{2}^{2+}])\), anion/anion \((\mathrm{I}^{-}+ \mathrm{IrCl}_{6}^{2-})\) and cation/anion \(([\mathrm{Ru}(\mathrm{NH}_{3})_{5}\mathrm{py}^{2+}] + \mathrm{S}_{2}\mathrm{O}_{8}^{2-})\) reactions. The approach can be easily generalized to cases in which more than two pseudophases (or more than one receptor) are present in the reactive system, as well as cases in which the reaction can follow more than two reaction paths. The approach is consistent with (but more general than) the Pseudophase and related models, such as the Pseudophase Ion Exchange Model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menger, F.M., Portnoy, C.E.: On chemistry of reactions proceeding inside molecular aggregates. J. Am. Chem. Soc. 89, 4698–4703 (1967)

    Article  CAS  Google Scholar 

  2. Bunton, C.A., Nome, F.H., Quina, F.M., Romsted, L.S.: Ion binding and reactivity at charged aqueous interfaces. Acc. Chem. Res. 24, 357–364 (1991)

    Article  CAS  Google Scholar 

  3. Marcus, R.A.: Chemical + electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964)

    Article  CAS  Google Scholar 

  4. Böttcher, C.J.F.: Theory of Dielectric Polarization. Elsevier, Amsterdam (1973)

    Google Scholar 

  5. Lao, K.Q., Franzen, S., Stanley, R.J., Lambright, D.G., Boxer, S.G.: Effects of applied electric-fields on the quantum yields of the initial electron-transfer steps in bacterial photosynthesis. 1. Quantum yield failure. J. Phys. Chem. 97, 13165–13171 (1993)

    Article  CAS  Google Scholar 

  6. Weaver, M.J.: Dynamic solvent effects on activated electron-transfer reactions—Principles, pitfalls, and progress. Chem. Rev. 92, 463–480 (1992)

    Article  CAS  Google Scholar 

  7. Biswas, R., Rohman, N., Pradhan, T., Buchner, R.: Intramolecular charge transfer reaction, polarity, and dielectric relaxation in AOT/water/heptane reverse micelles: Pool size dependence. J. Phys. Chem. B 112, 9379–9388 (2008)

    Article  CAS  Google Scholar 

  8. Grueso, E., Roldan, E., Sanchez, F.: Kinetic study of the cetyltrimethylammonium/DNA interaction. J. Phys. Chem. B 113, 8319–8323 (2009)

    Article  CAS  Google Scholar 

  9. Hazra, P., Sarkar, N.: Intramolecular charge transfer processes and solvation dynamics of Coumarin 490 in reverse micelles. Chem. Phys. Lett. 342, 303–311 (2001)

    Article  CAS  Google Scholar 

  10. Bagchi, B., Chandra, A.: Collective orientational relaxation in dense dipolar liquids. Adv. Chem. Phys. 80, 1–126 (1991)

    Article  CAS  Google Scholar 

  11. Sanchez, F., Lopez-Lopez, M., Perez-Tejeda, P.: Effect of the micellar electric field on electron-transfer processes. A study of the metal-to-metal charge transfer within the binuclear complex pentaammineruthenium(III)-(μ-cyano)pentacyanoruthenium(II) in micellar solutions of sodium dodecylsulfate (SDS) and hexadecyltrimethylammonium chloride (CTACl). Langmuir 14, 3762–3766 (1998)

    Article  CAS  Google Scholar 

  12. Muriel-Delgado, F., Jimenez, R., Gomez-Herrera, C., Sanchez, F.: Use of the Brønsted equation in the interpretation of micellar effects in kinetics (II). Study of the reaction \([\mathrm{Fe}(\mathrm{CN})_{5}(\mbox{4-CNpy})]^{3-} + \mathrm{CN}^{-} \rightleftarrows \mathrm{Fe}(\mathrm{CN})^{4-}_{6} + 4\)-CNpy in CTACl micellar solutions. Langmuir 15, 4344–4350 (1999)

    Article  CAS  Google Scholar 

  13. Grueso, E., Prado-Gotor, R., Lopez, M., Gomez-Herrera, C., Sanchez, F.: DNA effects upon the reaction between acetonitrile pentacyanoferrate(II) and ruthenium pentammine pyrazine: Kinetic and thermodynamic evidence of the interaction of DNA with anionic species. Chem. Phys. 314, 101–107 (2005)

    Article  CAS  Google Scholar 

  14. Graciani, M.D., Rodriguez, A., Fernandez, G., Muñoz, M., Moya, M.L.: Study of the reaction of methyl 4-nitrobenzenesulfonate and Br in water–glycerol cationic micellar solutions. Int. J. Chem. Kinet. 40, 845–852 (2008)

    Article  Google Scholar 

  15. Mitra, R.K., Sinha, S.S., Verma, P.K., Pal, S.K.: Modulation of dynamics and reactivity of water in reverse micelles of mixed surfactants. J. Phys. Chem. B 112, 12946–12953 (2008)

    Article  CAS  Google Scholar 

  16. Verma, P.K., Makhal, A., Mitra, R.K., Pal, S.K.: Role of solvation dynamics in the kinetics of solvolysis reactions in microreactors. Phys. Chem. Chem. Phys. 11, 8467–8476 (2009)

    Article  CAS  Google Scholar 

  17. Graciani, M.D., Rodriguez, A., Moya, M.L.: Study of the reaction between methyl 4-nitrobenzenesulfonate and bromide ions in mixed single-chain-gemini micellar solutions: Kinetic evidence for morphological transitions. J. Colloid Interface Sci. 328, 324–330 (2008)

    Article  CAS  Google Scholar 

  18. Carrasco, M., Coca, R., Cruz, I., Daza, S., Espina, M., Garcia-Fernandez, E., Guerra, F.J., Leon, R., Marchena, M.J., Perez, I., Puente, M., Suarez, E., Valencia, I., Villalba, I., Jimenez, R.: Determination of the electrostatic potential difference between DNA and the solution containing it: A kinetic approach. Chem. Phys. Lett. 441, 148–151 (2007)

    Article  CAS  Google Scholar 

  19. Lopez-Cornejo, P., Perez, P., Garcia, F., de la Vega, R., Sanchez, F.: Use of the pseudophase model in the interpretation of reactivity under restricted geometry conditions. An application to the study of the \(\mathrm{Ru}(\mathrm{NH}_{3})_{5}\mathrm{pz}^{2+} + \mathrm{S}_{2}\mathrm{O}_{8}^{2-}\) electron-transfer reaction in different microheterogeneous systems. J. Am. Chem. Soc. 124, 5154–5164 (2002)

    Article  CAS  Google Scholar 

  20. Marchena, M., Sanchez, F.: The Brønsted equation: The universal equation? Prog. React. Kinet. Mech. 31, 221–248 (2006)

    Article  CAS  Google Scholar 

  21. Brønsted, J.N.: On the theory of the chemical reaction rate. Z. Phys. Chem. 102, 169–207 (1922)

    Google Scholar 

  22. Ford, P., Rudd, D.F.P., Gaunder, R., Taube, H.: Synthesis and properties of pentaamminepyridineruthenium(II) and related pentaamminerulthenium complexes of aromatic nitrogen heterocycles. J. Am. Chem. Soc. 90, 1187–1194 (1968)

    Article  CAS  Google Scholar 

  23. Malin, J.M., Ryan, D.A., Ohalloran, T.V.: Thermal and light-induced electron-transfer between iron(II) and cobalt(III) mediated by bridging pyrazines. J. Am. Chem. Soc. 100, 2097–2102 (1978)

    Article  CAS  Google Scholar 

  24. Umlong, I.M., Ismail, K.: Micellization behaviour of sodium dodecyl sulfate in different electrolyte media. J. Colloid Interface Sci. 291, 529–536 (2005)

    Article  CAS  Google Scholar 

  25. Binks, B.P.: Emulsion-type below and above the cmc in AOT microemulsion systems. Colloids Surf., a Physicochem. Eng. Asp. 71, 167–172 (1993)

    Article  CAS  Google Scholar 

  26. Marchena, M., Sanchez, F.: Kinetic effects of methyl-β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin and their mixtures on the reaction [Fe(CN)5(4-phepy)]3−+[Co(NH3)4(H2O)2]3+. Chem. Phys. Lett. 471, 234–238 (2009)

    Article  CAS  Google Scholar 

  27. Miller, D.D., Evans, D.F.: Fluorescence quenching in double-chained surfactants. 1. Theory of quenching in micelles and vesicles. J. Phys. Chem. 93, 323–333 (1989)

    Article  CAS  Google Scholar 

  28. Miller, D.D., Magid, L.J., Evans, D.F.: Fluorescence quenching in double-chained surfactants. 2. Experimental results. J. Phys. Chem. 94, 5921–5930 (1990)

    Article  CAS  Google Scholar 

  29. Grand, D., Hautecloque, S.: Electron-transfer from nucleophilic species to N,N,N′,N′-tetramethylbenzidine cation in micellar media—Effect of interfacial electrical potential on cation decay. J. Phys. Chem. 94, 837–841 (1990)

    Article  CAS  Google Scholar 

  30. Hautecloque, S., Grand, D., Bernas, A.: Salt effects on photoionization yields in micellar systems. J. Phys. Chem. 89, 2705–2708 (1985)

    Article  CAS  Google Scholar 

  31. de la Vega, R., Lopez-Cornejo, P., Perez-Tejeda, P., Sanchez, A., Prado, R., Lopez, M., Sanchez, F.: Influence of the micellar electric field on electron-transfer processes (II): A study of the \(\mathrm{Ru}(\mathrm{NH}_{3})_{5}\mathrm{pz}^{2+} + \mathrm{Co}(\mathrm{C}_{2}\mathrm{O}_{4})_{3}^{3-}\) reaction in SDS micellar solution containing NaCl. Langmuir 16, 7986–7990 (2000)

    Article  Google Scholar 

  32. Laidler, K.J.: Chemical Kinetics. McGraw Hill, London (1965)

    Google Scholar 

  33. Herrera, C.G., Jimenez, R., Perez-Tejeda, P., Lopez-Cornejo, P., Prado-Gotor, R., Sanchez, F.: On the equivalence of the pseudophase related models and the Brønsted approach in the interpretation of reactivity under restricted geometry conditions. Prog. React. Kinet. Mech. 29, 289–310 (2004)

    CAS  Google Scholar 

  34. Furholz, U., Haim, A.: Kinetics and mechanisms of the reactions of mononuclear and binuclear ruthenium(II) amine complexes with peroxydisulfate. Inorg. Chem. 26, 3243–3248 (1987)

    Article  Google Scholar 

  35. Rodriguez, A., Bejarano, M., Fernandezboy, E., Graciani, M.D., Sanchez, F., Moya, M.L.: Kinetic-study of the oxidation of iodide by hexachloroiridate(IV) in concentrate electrolyte-solutions. J. Chem. Soc. Faraday Trans. 88, 591–594 (1992)

    Article  Google Scholar 

  36. Jimenez, R., Graciani, M.M., Rodriguez, A., Moya, M.L., Sanchez, F., Lopez-Cornejo, P.: Study of the reactions \(\mathrm{I}^{-} + \mathrm{IrCl}^{2-}_{6}\) and \(\mathrm{Fe}(\mathrm{CN})^{4-}_{6}+ \mathrm{S}_{2}\mathrm{O}^{2-}_{8}\) in micellar solutions. Langmuir 13, 187–191 (1997)

    Article  CAS  Google Scholar 

  37. Lopez-Cornejo, P., Jimenez, R., Moya, M.L., Sanchez, F.: Use of the Brønsted equation in the interpretation of micellar effects in kinetics. Langmuir 12, 4981–4986 (1996)

    Article  Google Scholar 

  38. Quina, F.H., Chaimovich, H.: Ion-exchange in micellar solutions. 1. Conceptual-framework for ion-exchange in micellar solutions. J. Phys. Chem. 83, 1844–1850 (1979)

    Article  CAS  Google Scholar 

  39. Kid, A.F.: Fundamentals of Electricity and Magnetism. McGraw Hill, New York (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Marchena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchena, M., Sánchez, F. A General Formulation Encompassing the Effects of Salts and Micelles (Direct and Reverse) on Ionic Reactions. J Solution Chem 40, 357–376 (2011). https://doi.org/10.1007/s10953-011-9662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9662-x

Keywords

Navigation