Journal of Solution Chemistry

, Volume 39, Issue 11, pp 1589–1596 | Cite as

Solvent Effects on the Protonation Constants of Some α-Amino Acid Esters in 1,4-Dioxane–Water Mixtures

  • Alev Doğan
  • Nazife Aslan
  • Esin Canel
  • Esma Kılıç
Article

Abstract

The stoichiometric protonation constants of some α-amino acid esters (glycine methyl ester, glycine t-butyl ester, l-valine methyl ester, l-valine ethyl ester, l-valine t-butyl ester, l-serine methyl ester, l-serine ethyl ester, l-leucine methyl ester, l-leucine ethyl ester, l-leucine t-butyl ester, l-alanine methyl ester, l-alanine benzyl ester, l-phenylalanine methyl ester, l-phenylalanine ethyl ester, and l-phenylalanine t-butyl ester) in water and 20%, 40%, and 60% (v/v) 1,4-dioxane–water mixtures have been determined at an ionic strength of 0.10 mol⋅L−1 NaCl and at 25.0±0.1 °C under a nitrogen atmosphere. A potentiometric method was used and the calculation of the protonation constants has been carried out using the BEST computer program. The results were discussed in terms of macroscopic properties of the mixed solvent. The stoichiometric protonation constants were influenced by changes in solvent composition and their variations were discussed in terms of preferential solvation. Also, knowledge the protonation constant of α-amino acid esters will be helpful when determining the microscopic equilibrium constants of their corresponding amino acids.

Keywords

α-Amino acid esters 1,4-Dioxane–water mixtures Protonation constants Solvent effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crosby, J., Stone, R., Lienhard, G.E.: Mechanisms of thiamine-catalyzed reactions: decarboxylation of 2-(1-carboxy-1-hydroxyethyl)-3,4-dimethylthiazolium chloride. J. Am. Chem. Soc. 92, 2891–2900 (1970) CrossRefGoogle Scholar
  2. 2.
    Nishi, N., Takahashi, S., Matsumoto, M., Tanaka, A., Muraya, K., Taramuku, T., Yamaguchi, T.: Hydrogen-bonded cluster formation and hydrophobic solute association in aqueous solutions of ethanol. J. Phys. Chem. 99, 462–468 (1995) CrossRefGoogle Scholar
  3. 3.
    Rossotti, H.: The Study of Ionic Equilibria. Longman, London (1978) Google Scholar
  4. 4.
    Doğan, A., Köseoğlu, F., Kılıç, E.: Potentiometric studies on the protonation constants and solvation of some α-amino acid methyl- and ethyl-esters in ethanol–water mixtures. Indian J. Chem. 41A, 960–962 (2002) Google Scholar
  5. 5.
    Doğan, A., Kılıç, E.: Potentiometric studies on the protonation constants and solvation of some α-amino acid benzyl- and t-butyl-esters in ethanol–water mixtures. Turk. J. Chem. 20, 41–47 (2005) Google Scholar
  6. 6.
    Doğan, A., Kılıç, E.: Tautomeric and microscopic protonation constants of amino acids. Anal. Biochem. 365, 7–13 (2007) CrossRefGoogle Scholar
  7. 7.
    Canel, E., Gültepe, A., Doğan, A., Kılıç, E.: The determination of protonation constants of some amino acids and their esters by potentiometry in different media. J. Solution Chem. 35, 5–19 (2006) CrossRefGoogle Scholar
  8. 8.
    Doğan, A., Şakıyan, I., Kılıç, E.: Potentiometric studies on some α-amino acid-Schiff bases and their manganese(III) complexes in dimethylsulfoxide–water mixtures. J. Solution Chem. 33, 1539–1547 (2004) CrossRefGoogle Scholar
  9. 9.
    Doğan, A., Kılıç, E.: Potentiometric studies on the stability constants of some α-amino acid-copper(II) and nickel(II) systems in 40% ethanol–60% water(v/v) mixture. Indian J. Chem. 42, 1632–1635 (2003) Google Scholar
  10. 10.
    Doğan, A., Köseoğlu, F., Kılıç, E.: Studies on the macroscopic protonation constants of some α-amino acids in ethanol–water mixture. Anal. Biochem. 309, 75–79 (2002) CrossRefGoogle Scholar
  11. 11.
    Doğan, A., Köseoğlu, F., Kılıç, E.: The stability constants of copper(II) complexes with some α-amino acids in dioxan–water mixture. Anal. Biochem. 295, 237–239 (2001) CrossRefGoogle Scholar
  12. 12.
    Köseoğlu, F., Kılıç, E., Doğan, A.: Studies on the protonation constants and solvation of α-amino acids in dioxan–water mixtures. Anal. Biochem. 277, 243–246 (2000) CrossRefGoogle Scholar
  13. 13.
    Nath, Roy M., Sinha, B., Dey, R., Sinha, A.: Solute–solvent and solute–solute interactions of resorcinol in mixed 1,4-dioxane–water systems at different temperatures. Int. J. Thermophys. 25, 1549–1563 (2005) Google Scholar
  14. 14.
    Bester-Rogac, M., Neueder, R., Barthel, J.: Conductivity of sodium chloride in water–1,4-dioxane mixtures at temperatures from 5 to 35 °C. I. Dilute solutions. J. Solution Chem. 28, 1071–1086 (1999) CrossRefGoogle Scholar
  15. 15.
    Tribolet, R., Malini-Balakrishnan, R., Sigel, H.: Influence of decreasing solvent polarity (dioxane–water mixtures) on the stability and structure of binary and ternary complexes of adenosine 5′-triphosphate and uridine 5′-triphosphate. J. Chem. Soc., Dalton Trans. 11, 2291–2303 (1985) CrossRefGoogle Scholar
  16. 16.
    Martell, A.E., Calvin, M.: Chemistry of the Methal Chelate Compounds. Prentice Hall, New York (1952) Google Scholar
  17. 17.
    Bates, R.G.: Determination of pH, Theory and Practice. Wiley, New York (1973) Google Scholar
  18. 18.
    Perrin, D.D., Armerega, W.L.F.: Purification of Laboratory Chemicals, 1st edn. Pergamon, Oxford (1966) Google Scholar
  19. 19.
    Gran, G.: Determination of the equivalence point in potentiometric titrations. Acta Chem. Scand. 4, 559–577 (1950) CrossRefGoogle Scholar
  20. 20.
    Gran, G.: Determination of the equivalence point in potentiometric titration. Part II. Analyst 77, 661–671 (1952) CrossRefGoogle Scholar
  21. 21.
    Martell, A.E., Motekaitis, R.J.: The Determination and use of Stability Constants. VCH, Weinheim (1988) Google Scholar
  22. 22.
    Meloun, M., Havel, J., Högfeldt, H.: Computation of Solution Equilibria. Wiley, New York (1988) Google Scholar
  23. 23.
    Woolley, E.M., Hurkot, D.G., Hepler, L.G.: Ionization constants for water in aqueous organic mixtures. J. Phys. Chem. 74, 3908–3913 (1970) CrossRefGoogle Scholar
  24. 24.
    Kılıç, E., Aslan, N.: Determination of autoprotolysis constants of water–organic solvent mixtures by potentiometry. Microchim. Acta 151, 89–92 (2005) CrossRefGoogle Scholar
  25. 25.
    Serjeant, E.P.: Potentiometry and Potentiometric Titrations. Wiley, New York (1984) Google Scholar
  26. 26.
    Motekaitis, R.J., Martell, A.E.: Program PKAS: a novel algorithmfor the computation of successive protonation constants. Can. J. Chem. 60, 1681–1689 (1982) CrossRefGoogle Scholar
  27. 27.
    Motekaitis, R.J., Martell, A.E.: BEST—a new program for rigorous calculation of equilibrium parameters of complex multi-component systems. Can. J. Chem. 60, 2403–2409 (1982) CrossRefGoogle Scholar
  28. 28.
    Pelcováa, M., Jiráskováa, E., Nevecnáa, T., Kulhánekb, J.: The effect of substituents and the ionic strength on acid–base properties of substituted anilines. Acta Univ. Palacki. Olumuc Fac. Rer. Nat. Chem. 40, 71–77 (2001) Google Scholar
  29. 29.
    Cai, Q., Zeng, K., Ruan, C., Desai, T.A., Grimes, C.A., Wireless, A.: Remote query glucose biosensor based on a pH-sensitive polymer. Anal. Chem. 76, 4038–4043 (2004) CrossRefGoogle Scholar
  30. 30.
    Niazi, M.S.K., Mollin, J.: Dissociation constants of some amino acid and pyridinecarboxylic acids in ethanol–H2O mixtures. Bull. Chem. Soc. Jpn. 60, 2605–2610 (1987) CrossRefGoogle Scholar
  31. 31.
    Panichajakul, C.C., Woolley, E.M.: Potentiometric method for determination of acid ionization constants in aqueous organic mixtures. Anal. Chem. 47, 1860–1863 (1975) CrossRefGoogle Scholar
  32. 32.
    Irving, H., Rossotti, H.: Some relationships among the stabilities of metal complexes. Acta Chem. Scand. 10, 72–93 (1956) CrossRefGoogle Scholar
  33. 33.
    Irving, H., Rossotti, H.: The theoretical basis of sensitivity tests and their application to some potential organic reagents for metals. Analyst 80, 245–249 (1955) CrossRefGoogle Scholar
  34. 34.
    Gentile, P.S., Cefole, M., Celiano, A.V.: Coordination compounds. VI. Determination of thermodynamic data for acetylacetone in mixed solvents. J. Phys. Chem. 67, 1447–1450 (1963) CrossRefGoogle Scholar
  35. 35.
    Barbosa, J., Barron, D., Eltnan, J.L., Buti, S.: On the role of solvent in acid–base equilibria of diuretics in acetonitrile–water mixed solvents. Talanta 45, 817–827 (1998) CrossRefGoogle Scholar
  36. 36.
    Chattopadhyay, A.K., Lahiri, S.C.: Studies on the solvation of amino acids in ethanol and water mixtures. Electrochim. Acta 27, 269–272 (1982) CrossRefGoogle Scholar
  37. 37.
    Bates, R.G.: Solute–solvent interactions and acid–base dissociation in mixed solvent systems. J. Electroanal. Chem. 29, 1–19 (1971) CrossRefGoogle Scholar
  38. 38.
    Paabo, M., Bates, R.G., Robinson, R.A.: Dissociation of ammonium ion in methanol–water solvents. J. Phys. Chem. 70, 247–251 (1966) CrossRefGoogle Scholar
  39. 39.
    Takamuku, T., Yamaguchi, A., Tabata, M., Nishi, N., Yashida, K., Wakita, H., Yamaguchi, T.: Structure and dynamics of 1,4-dioxane–water binary solutions studied by X-ray diffraction mass spectrometry and NMR relaxation. J. Mol. Liq. 83, 163–177 (1999) CrossRefGoogle Scholar
  40. 40.
    Kılıç, E., Gökçe, G., Canel, E.: The protonation constants of some aliphatic alkylamines in ethanol–water mixtures. Turk. J. Chem. 26, 843–849 (2002) Google Scholar
  41. 41.
    Kılıç, E., Köseoğlu, F., Başgut, Ö.: Protonation constants of some pyridine derivatives in ethanol–water mixtures. Anal. Chim. Acta 294, 215–220 (1994) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alev Doğan
    • 1
  • Nazife Aslan
    • 2
  • Esin Canel
    • 2
  • Esma Kılıç
    • 2
  1. 1.Gazi Faculty of EducationGazi UniversityAnkaraTurkey
  2. 2.Science Faculty, Chemistry DepartmentAnkara UniversityTandoğan-AnkaraTurkey

Personalised recommendations