Skip to main content
Log in

DFT Calculations on Hydrogen-Bonded Complexes Formed Between Guanine and Acrylamide

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

B3LYP/6-311+G* theoretical calculations have been employed to investigate the complexes involving hydrogen bonding between guanine and acrylamide. Nine stable conformers were obtained by geometry optimization without imaginary frequencies. The calculation results revealed that the stability of these complexes was accounted for by the intensity and numbers of hydrogen bonds between guanine and acrylamide, which was proved by the energy analysis and the topological properties at the critical points. In these optimized complexes, the complex with three hydrogen bonds was the most stable one because it offered the biggest binding energy. Clearly, the hydrogen bonds appear to be crucial in the stability of these complexes. This work will provide another nosogenetic interpretation besides the covalent interactions between DNA and acrylamide, which are of interest for studying DNA mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yurenko, Y.P., Zhurakivsky, R.O., Samijlenko, S.P., Ghomi, M., Hovorun, D.M.: The whole of intramolecular H-bonding in the isolated DNA nucleoside thymidine: AIM electron density topological study. Chem. Phys. Lett. 447, 140–146 (2007)

    Article  CAS  Google Scholar 

  2. Gabriella, T., Francesco, B., Renzo, C.: DFT-molecular modeling analysis of C–H/N and C–H/S hydrogen bond type interactions in selected platinum–purine/pyrimidine complexes. J. Mol. Struct. (Theochem) 766, 61–72 (2006)

    Article  Google Scholar 

  3. Watson, J.D., Crick, F.H.C.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature (London, United Kingdom) 171, 737–738 (1953)

    Article  CAS  Google Scholar 

  4. Zhang, S., Li, H., Yang, P., Li, S.: Geometries and properties of guanine–BH3 complex: an investigation with density functional theory (DFT) method. J. Mol. Struct. (Theochem) 682, 47–53 (2004)

    Article  CAS  Google Scholar 

  5. Shukla, M.K., Leszczynski, J.: Spectral origins and ionization potentials of guanine tautomers: theoretical elucidation of experimental findings. Chem. Phys. Lett. 429, 261–265 (2006)

    Article  CAS  Google Scholar 

  6. Liang, W., Li, H., Hu, X., Han, J.: Systematic theoretical investigations on all of the tautomers of guanine: from both dynamics and thermodynamics viewpoint. Chem. Phys. 328, 93–102 (2006)

    Article  CAS  Google Scholar 

  7. Leão, M.B.C., Longo, R.L., Pavão, A.C.: A molecular orbital analysis of the DNA bases. J. Mol. Struct. (Theochem) 490, 145–153 (1999)

    Article  Google Scholar 

  8. Koyama, N., Sakamoto, H., Sakuraba, M., Koizumi, T., Takashima, Y., Hayashi, M., Matsufuji, H., Yamagata, K., Masuda, S., Kinae, N., Honma, M.: Genotoxicity of acrylamide and glycidamide in human lymphoblastoid TK6 cells. Mutat. Res. 603, 151–158 (2006)

    CAS  Google Scholar 

  9. Parzefall, W.: Minireview on the toxicity of dietary acrylamide. Food Chem. Toxicol. 46, 1360–1364 (2008)

    Article  CAS  Google Scholar 

  10. Maniére, I., Godard, T., Doerge, D.R., Churchwell, M., Guffroy, M., Laurentie, M., Poul, J.M.: DNA damage and DNA adduct formation in rat tissues following oral administration of acrylamide. Mutat. Res. 580, 119–129 (2005)

    Google Scholar 

  11. Boys, S.F., Bernardi, F.: Calculations of small molecular interactions by differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  12. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A.Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian03. Gaussian. Inc., Pittsburgh (2003)

  13. Biegler-Konig, F., Bader, R.F.: AIM 2000, Version 2 (2002)

  14. Zefirov, Y.V.: Van der Waals atomic radii of metals of the first three groups of the periodic chart. Z. Neorg. Khim. 45, 1691–1693 (2000)

    CAS  Google Scholar 

  15. Dean, J.A.: Lange’s Handbook of Chemistry, 15th edn. World Books, Beijing (1999)

    Google Scholar 

  16. Bader, R.F.W.: Atoms in Molecules. A Quantum Theory. Clarendon, Oxford (1990)

    Google Scholar 

  17. Bader, R.F.W.: A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 102, 7314–7323 (1998)

    CAS  Google Scholar 

  18. Yang, Y., Zhang, W., Pei, S., Shao, J., Huang, W., Gao, X.: Blue-shifted and red-shifted hydrogen bonds: theoretical study of the CH3CHO–NH3 complexes. J. Mol. Struct. (Theochem) 732, 33–37 (2005)

    Article  CAS  Google Scholar 

  19. Gur’yanova, N., Gol’dshtein, I.P., Romm, I.P.: The Donor–Acceptor Bond. Wiley, New York (1975)

    Google Scholar 

  20. Garau, C., Frontera, A., Quinonero, D., Ballester, P., Costa, A., Deya, P.M.: A topological analysis of the electron density in anion-interactions. ChemPhysChem 4, 1344–1348 (2003)

    Article  CAS  Google Scholar 

  21. Szefczyk, B., Sokalski, W.A., Leszczynski, J.: Optimal methods for calculation of the amount of intermolecular electron transfer. J. Chem. Phys. 117, 6952–6958 (2002)

    Article  CAS  Google Scholar 

  22. Breneman, C.M., Wiberg, K.B.: Determining atom-centered monopoles from molecular electrostatic potentials: the need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Zhang, Y., Yu, F. et al. DFT Calculations on Hydrogen-Bonded Complexes Formed Between Guanine and Acrylamide. J Solution Chem 39, 1341–1349 (2010). https://doi.org/10.1007/s10953-010-9588-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9588-8

Keywords

Navigation