Abstract
B3LYP/6-311+G* theoretical calculations have been employed to investigate the complexes involving hydrogen bonding between guanine and acrylamide. Nine stable conformers were obtained by geometry optimization without imaginary frequencies. The calculation results revealed that the stability of these complexes was accounted for by the intensity and numbers of hydrogen bonds between guanine and acrylamide, which was proved by the energy analysis and the topological properties at the critical points. In these optimized complexes, the complex with three hydrogen bonds was the most stable one because it offered the biggest binding energy. Clearly, the hydrogen bonds appear to be crucial in the stability of these complexes. This work will provide another nosogenetic interpretation besides the covalent interactions between DNA and acrylamide, which are of interest for studying DNA mutation.
Similar content being viewed by others
References
Yurenko, Y.P., Zhurakivsky, R.O., Samijlenko, S.P., Ghomi, M., Hovorun, D.M.: The whole of intramolecular H-bonding in the isolated DNA nucleoside thymidine: AIM electron density topological study. Chem. Phys. Lett. 447, 140–146 (2007)
Gabriella, T., Francesco, B., Renzo, C.: DFT-molecular modeling analysis of C–H/N and C–H/S hydrogen bond type interactions in selected platinum–purine/pyrimidine complexes. J. Mol. Struct. (Theochem) 766, 61–72 (2006)
Watson, J.D., Crick, F.H.C.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature (London, United Kingdom) 171, 737–738 (1953)
Zhang, S., Li, H., Yang, P., Li, S.: Geometries and properties of guanine–BH3 complex: an investigation with density functional theory (DFT) method. J. Mol. Struct. (Theochem) 682, 47–53 (2004)
Shukla, M.K., Leszczynski, J.: Spectral origins and ionization potentials of guanine tautomers: theoretical elucidation of experimental findings. Chem. Phys. Lett. 429, 261–265 (2006)
Liang, W., Li, H., Hu, X., Han, J.: Systematic theoretical investigations on all of the tautomers of guanine: from both dynamics and thermodynamics viewpoint. Chem. Phys. 328, 93–102 (2006)
Leão, M.B.C., Longo, R.L., Pavão, A.C.: A molecular orbital analysis of the DNA bases. J. Mol. Struct. (Theochem) 490, 145–153 (1999)
Koyama, N., Sakamoto, H., Sakuraba, M., Koizumi, T., Takashima, Y., Hayashi, M., Matsufuji, H., Yamagata, K., Masuda, S., Kinae, N., Honma, M.: Genotoxicity of acrylamide and glycidamide in human lymphoblastoid TK6 cells. Mutat. Res. 603, 151–158 (2006)
Parzefall, W.: Minireview on the toxicity of dietary acrylamide. Food Chem. Toxicol. 46, 1360–1364 (2008)
Maniére, I., Godard, T., Doerge, D.R., Churchwell, M., Guffroy, M., Laurentie, M., Poul, J.M.: DNA damage and DNA adduct formation in rat tissues following oral administration of acrylamide. Mutat. Res. 580, 119–129 (2005)
Boys, S.F., Bernardi, F.: Calculations of small molecular interactions by differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A.Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian03. Gaussian. Inc., Pittsburgh (2003)
Biegler-Konig, F., Bader, R.F.: AIM 2000, Version 2 (2002)
Zefirov, Y.V.: Van der Waals atomic radii of metals of the first three groups of the periodic chart. Z. Neorg. Khim. 45, 1691–1693 (2000)
Dean, J.A.: Lange’s Handbook of Chemistry, 15th edn. World Books, Beijing (1999)
Bader, R.F.W.: Atoms in Molecules. A Quantum Theory. Clarendon, Oxford (1990)
Bader, R.F.W.: A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 102, 7314–7323 (1998)
Yang, Y., Zhang, W., Pei, S., Shao, J., Huang, W., Gao, X.: Blue-shifted and red-shifted hydrogen bonds: theoretical study of the CH3CHO–NH3 complexes. J. Mol. Struct. (Theochem) 732, 33–37 (2005)
Gur’yanova, N., Gol’dshtein, I.P., Romm, I.P.: The Donor–Acceptor Bond. Wiley, New York (1975)
Garau, C., Frontera, A., Quinonero, D., Ballester, P., Costa, A., Deya, P.M.: A topological analysis of the electron density in anion-interactions. ChemPhysChem 4, 1344–1348 (2003)
Szefczyk, B., Sokalski, W.A., Leszczynski, J.: Optimal methods for calculation of the amount of intermolecular electron transfer. J. Chem. Phys. 117, 6952–6958 (2002)
Breneman, C.M., Wiberg, K.B.: Determining atom-centered monopoles from molecular electrostatic potentials: the need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, X., Zhang, Y., Yu, F. et al. DFT Calculations on Hydrogen-Bonded Complexes Formed Between Guanine and Acrylamide. J Solution Chem 39, 1341–1349 (2010). https://doi.org/10.1007/s10953-010-9588-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-010-9588-8