Abstract
This work gives estimated values of the velocity correlation coefficients VCCs for ternary electrolyte solutions (the system may have a tracer ion as one of the components), utilizing available measured transport coefficients. The VCCs originate from linear response theory and give a deeper insight into the microdynamic structure of complex ionic solutions. By assuming Onsager’s relation to be valid, ten sets of velocity correlation coefficients were calculated for a ternary system and were used to calculate the VCCs for 134Cs+ ion (present in trace amount) transport in aqueous solutions of CsCl and KCl at 25 ○C.
Similar content being viewed by others
References
Kropman, M.K., Bakkar, H.J.: Dynamics of water molecules in aqueous solvation shells. Science 291, 2118–2120 (2001)
Chandra, A.: Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions. Phys. Rev. Lett. 85, 768–771 (2000)
Barthel, J.M.G., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions. Springer, New York (1998)
Hubbard, J.B., Wolynes, P.G.: In: Dogonadze, R.R., Kalman, E., Kornyshev, A.A., Ulstrup, J. (eds.) Chemical Physics of Solvation, Part D. Elsevier, Amsterdam (1988)
Roux, B., Karplus, M.: Molecular dynamics simulations of the gramicidin channel. Ann. Rev. Biophys. Biomol. Struct. 23, 732–753 (1994)
Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions. Reinhold, New York (1958)
Rick, S.W.: Simulations of ice and liquid water over a range of temperatures using the fluctuating charge model. J. Chem. Phys. 114, 2276–2283 (2001)
Ren, P., Ponder, J.W.: Temperature and pressure dependence of the AMOEBA water model. J. Phys. Chem. B 108, 13427–13437 (2004)
Yu, H., Van Gunsteren, W.F.: Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. J. Chem. Phys. 121, 9549–9564 (2004)
Hertz, H.G., Mills, R.: Velocity correlations in aqueous electrolyte solutions from diffusion, conductance and transference data. Applications to concentrated solutions of 1:2 electrolytes. J. Phys. Chem. 82, 952–959 (1978)
Dufreche, J.F., Bernard, O., Turq, P., Mukherjee, A., Bagchi, B.: Ionic self-diffusion in concentrated aqueous electrolyte solutions. Phys. Rev. Lett. 88, 095902 (2002)
Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1930)
Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)
McCall, D.W., Douglass, D.C.: Diffusion in binary solute. J. Phys. Chem. 71, 987–997 (1967)
Douglass, D.C., Frisch, H.L.: Isothermal diffusion in some two- and three-component systems in terms of velocity correlation functions. J. Phys. Chem. 73, 3039–3047 (1969)
Steele, W.A.: In: Hanley, H.J.M. (ed.) Transport Phenomena in Fluids, p. 209. Marcel Dekker, New York (1969)
Barr, L.W., Miller, D.G., Mills, R.: Tracer (self) diffusion of potassium ion in NaCl–KCl–H2O mixtures at 25 ○C. J. Solution Chem. 9, 75–80 (1980)
Phang, S., Stokes, R.H.: Density, viscosity, conductance and transference number of concentrated aqueous magnesium chloride at 25 ○C. J. Solution Chem. 9, 497–505 (1980)
Woolf, L.A., Harris, K.R.: Velocity correlation coefficients as an expression of the particle-particle interaction in (electrolyte) solutions. J. Chem. Soc. Faraday Trans. I 74, 933–959 (1978)
Woolf, L.A.: Velocity correlation coefficients in multicomponent electrolyte solutions. J. Phys. Chem. 82, 959–962 (1978)
Mills, R., Hertz, H.G.: Application of the velocity cross-correlation method to binary nonelectrolyte mixtures. J. Phys. Chem. 84, 220–224 (1980)
Miller, D.G.: Explicit relations of velocity correlation coefficients to Onsager l ij ’s, to experimental quantities, and to infinite dilution limiting laws for binary electrolyte solutions. J. Phys. Chem. 85, 1137–1146 (1981)
Friedman, H.L., Mills, R.: Velocity cross correlations in binary mixtures of simple fluids. J. Solution Chem. 10, 395–409 (1981)
Geiger, A., Hertz, H.G., Mills, R.: Velocity correlations in aqueous electrolyte solutions from diffusion, conductance and transference data: application to concentrated solutions of nickel chloride and magnesium chloride. J. Solution Chem. 10, 83–94 (1981)
Bastug, T., Kuyucak, S.: Temperature dependence of the transport coefficients of ions from molecular dynamics simulations. Chem. Phys. Lett. 408, 84–88 (2005)
Schönert, H.: Evaluation of velocity correlation coefficients from experimental transport data in electrolytic systems. J. Phys. Chem. 88, 3359–3363 (1984)
Miller, D.G.: Application of irreversible thermodynamics to electrolyte solutions. II. Ionic coefficients for isothermal vector transport processes in ternary systems. J. Phys. Chem. 71, 616–632 (1967)
Chakrabarti, H.: Cation diffusion coefficients in CsCl–H2O system over the concentration range 0.009 to 10.00 mol⋅dm−3 at 25 ○C. Appl. Radiat, Isot. 45, 171–175 (1994)
Anderson, J., Paterson, R.: Application of irreversible thermodynamics to isotopic diffusion. Part 1.—Isotope–isotope coupling coefficients for ions and water in concentrated aqueous solutions of alkali metal chlorides at 298.16 K. J. Chem. Soc. Faraday Trans. I 71, 1335–1351 (1975)
Raineri, F.O., Timmermann, E.O.: Salt velocity correlation functions: a microscopic interpretation. Part 2.—Solution of two or more binary electrolytes with a common ion. J. Chem. Soc. Faraday Trans. 86, 1057–1065 (1990)
Kirkwood, J.G., Baldwin, R.L., Dunlop, P.T., Gosting, L.J., Kegeles, G.: Flow equations and frames of reference for isothermal diffusion in liquids. J. Chem. Phys. 33, 1505–1513 (1960)
Chakrabarti, H., Changdar, S.N.: Accurate measurement of tracer diffusion coefficients in aqueous solutions with sliding cell technique. Appl. Radiat. Isot. 43, 405–412 (1992)
Chakrabarti, H.: Strong evidence of an isotope effect in the diffusion of a NaCl and CsCl solution. Phys. Rev. B, 12809–12812 (1995)
Mills, R., Woolf, L.A.: Tracer-diffusion coefficients of cesium ion in aqueous alkali chloride solutions at 25 ○. J. Phys. Chem. 63, 2068–2069 (1959)
Friedman, A.M., Kennedy, J.W.: The self-diffusion coefficients of potassium, cesium, iodide and chloride ions in aqueous solutions. J. Am. Chem. Soc. 77, 4499–4501 (1955)
Chakrabarti, H., Kanjilal, B.: Measurement of the diffusivity of cesium ion in aqueous rubidium chloride solution. J. Solution Chem. 39, 409–416 (2010)
Hasan, S.A.: Morphology of ion clusters in aqueous solutions. Phys. Rev. E 77, 031501 (2008)
Robinson, R.A., Strokes, R.H.: Electrolyte Solutions, Appendices pp. 466, 494. Butterworths Scientific, London (1959)
Mills, R., Lobo, V.M.M.: Self diffusion in electrolyte solutions—a critical examination of data compiled from literature. In: Physical Sciences Data, vol. 36. Elsevier, Amsterdam (1989)
Miller, D.G.: Application of irreversible thermodynamics to electrolyte solutions. I. Determination of ionic transport coefficients l ij for isothermal vector transport processes in binary electrolyte systems. J. Phys. Chem. 70, 2639–2659 (1966)
Supplement to Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry—Alkali Metals Part II, vol. 2, Supplement III. Longmans, London (1963)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chakrabarti, H., Sil, S. & Kundu, S. A Novel Attempt to Calculate the Velocity Correlation Coefficients in Ternary Electrolyte Solution. J Solution Chem 39, 1278–1290 (2010). https://doi.org/10.1007/s10953-010-9586-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-010-9586-x