Skip to main content
Log in

Isopiestic Determination of Water Activity on the System LiNO3+KNO3+H2O at 273.1 and 298.1 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Water activities in the ternary LiNO3+KNO3+H2O system and its sub-binary systems have been measured by the isopiestic method at 273.1 and 298.1 K. The measured results were treated by a Pitzer-Simonson-Clegg thermodynamic model, from which the predicted solubility isotherms were compared with the experimental results. Based on this comparison, the reliability of the measured results was discussed. The measured results help in predicting the phase diagram of the ternary system, as well as other multi-component systems based on the ternary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng, D., Voigt, W.: Phase diagram calculation of molten hydrates using the modified BET equation. CALPHAD 27, 243–251 (2003)

    Article  CAS  Google Scholar 

  2. Li, B., Zeng, D., Yin, X., Chen, Q.: Theoretical prediction and experimental determination of room-temperature phase change materials using hydrated salts as agents. J. Therm. Anal. Calorim. 100, 685–693 (2010)

    Article  CAS  Google Scholar 

  3. Zhang, A.Y., Yao, Y., Li, L.J., Song, P.S.: Isopiestic determination of the osmotic coefficients and Pitzer model representation for Li2B4O7(aq) at 298.15 K. J. Chem. Thermodyn. 37, 101–109 (2005)

    Article  CAS  Google Scholar 

  4. Yin, S., Yao, Y. Li: B., Tian H.: Isopiestic studies of aqueous MgB4O7 and MgSO4+MgB4O7 at 298.15 K and representation with Pitzer’s ion-interaction model. J. Solution Chem. 36, 1745–1761 (2007)

    Article  CAS  Google Scholar 

  5. Platford, R.F.: Osmotic coefficients of aqueous solutions of seven compound at 0 °C. J. Chem. Eng. Data 18, 215–217 (1973)

    Article  CAS  Google Scholar 

  6. Rard, J.A.: Isopiestic determination of the osmotic coefficients of aqueous H2SO4 at 25 °C. J. Chem. Eng. Data 28, 384–387 (1983)

    Article  CAS  Google Scholar 

  7. Clarke, E.C.W., Glew, D.N.: Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154 °C. J. Phys. Chem. Ref. Data 14, 489–610 (1985)

    Article  CAS  Google Scholar 

  8. Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions. CRC, Boca Raton (1991)

    Google Scholar 

  9. Rard, J.A., Clegg, S.L.: Critical evaluation of the thermodynamic properties of aqueous calcium chloride. 1: Osmotic and activity coefficients of 0–10.77 mol⋅kg−1 aqueous calcium chloride solutions at 298.15 K and correlation with extended Pitzer ion-interaction models. J. Chem. Eng. Data 42, 819–849 (1997)

    Article  CAS  Google Scholar 

  10. Kangro, W., Groeneveld, A.: Konzentrierte wässrige Lösungen. Z. Phys. Chem. N.F. 32, 110–126 (1962)

    CAS  Google Scholar 

  11. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworths, London (1970)

    Google Scholar 

  12. Hamer, W.J., Wu, Y.C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1099 (1972)

    Article  CAS  Google Scholar 

  13. Rard, J.A.: Solubility determinations by the isopiestic method and application to aqueous lanthanide nitrates at 25 °C. J. Solution Chem. 14, 457–471 (1985)

    Article  CAS  Google Scholar 

  14. Pollio, M.L., Kitic, D., Favetto, G.J., Chirife, J.: A note about the correct water activity value of saturated potassium nitrate at 25 °C. Lebensm.-Wissensch. Technol. 21(1), 66–67 (1988)

    CAS  Google Scholar 

  15. Karnaukhov, A.S.: The study of the ternary systems NaNO3–NH4NO3–H2O, KNO3–NH4NO3–H2O, RbNO3–NH4NO3–H2O by use of physicochemical analysis at 25 °C. Zh. Obsh. Khim. 26, 1027–1034 (1956)

    CAS  Google Scholar 

  16. Akerlof, G., Turck, H.E.: Solubility of some strong, highly soluble electrolytes in methyl alcohol and hydrogen peroxide-water mixtures at 25 °C. J. Am. Chem. Soc. 57, 1746–1750 (1935)

    Article  CAS  Google Scholar 

  17. Ravich, M.I., Ginzburg, F.B.: State diagram of the ternary system KNO3–NaNO3–H2O. Izv. Akad. Nauk SSSR, Ser. Khim. 2, 141–151 (1947)

    Google Scholar 

  18. Palitzsch, S.: Studies on the surface tensions of solutions. IV. The mutual effect of urethan and salts upon their solution-volume and their solubility in water. Z. Phys. Chem. 145, 97–102 (1929)

    CAS  Google Scholar 

  19. Zeng, D., Ming, J., Voigt, W.: Thermodynamic study of the system LiCl–LiNO3–H2O. J. Chem. Thermodyn. 40, 232–239 (2008)

    Article  CAS  Google Scholar 

  20. Yin, X., Li, Q., Wan, Y., Li, B., Zeng, D.: Comparison of thermodynamic models in high-solubility salt + H2O systems. I. Binary systems. Acta Chem. Sinica 66, 1815–1826 (2008)

    CAS  Google Scholar 

  21. Stokes, R.H., Robinson, R.A.: Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70, 1870–1878 (1948)

    Article  CAS  Google Scholar 

  22. Pitzer, K.S., Simonson, J.M.: Thermodynamics of multicomponent, miscible, ionic systems: theory and equations. J. Phys. Chem. 90, 3005–3009 (1986)

    Article  CAS  Google Scholar 

  23. Simonson, J.M., Pitzer, K.S.: Thermodynamics of multicomponent, miscible, ionic systems: the system LiNO3–KNO3–H2O. J. Phys. Chem. 90, 3009–3013 (1986)

    Article  CAS  Google Scholar 

  24. Clegg, S.L., Pitzer, K.S.: Thermodynamics of multicomponent, miscible, ionic solutions. Generalized equations for symmetrical electrolytes. J. Phys. Chem. 96, 3513–3520 (1992)

    Article  CAS  Google Scholar 

  25. Clegg, S.L., Pitzer, K.S., Brimblecombe, P.: Thermodynamics of multicomponent, miscible, ionic solutions. 2. Mixture including unsymmetrical electrolytes. J. Phys. Chem. 96, 9470–9479 (1992)

    Article  CAS  Google Scholar 

  26. Pitzer, K.S.: Thermodynamics of electrolytes. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  27. Pitzer, K.S., Wang, P., Rard, J.A., Clegg, S.L.: Thermodynamics of electrolytes. 13. Ionic strength dependence of higher-order terms; equations for CaCl2 and MgCl2. J. Solution Chem. 28, 265–282 (1999)

    Article  CAS  Google Scholar 

  28. Simonin, J.P., Blum, L., Turq, P.: Real ionic solutions in the mean spherical approximation. 1. Simple salts in the primitive model. J. Phys. Chem. 100, 7704–7709 (1996)

    Article  CAS  Google Scholar 

  29. Silvko, T.A., Shakhno, I.V., Plyushchev, V.E., Malyshko, L.F.: Lithium, potassium/nitrate, carbonate–water system at 25 °C. Zh. Neorg. Khim. 13, 2020–2026 (1968)

    CAS  Google Scholar 

  30. Yin, X., Wu, Y., Li, Q., Zeng, D.: Study on phase equilibrium of LiNO3–KNO3–H2O system. Chin. J. Inorg. Chem. 26, 45–48 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewen Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, D., Wu, Z., Yao, Y. et al. Isopiestic Determination of Water Activity on the System LiNO3+KNO3+H2O at 273.1 and 298.1 K. J Solution Chem 39, 1360–1376 (2010). https://doi.org/10.1007/s10953-010-9582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9582-1

Keywords

Navigation