Abstract
Electrical conductivities were measured for the pure ionic liquids [C6mim][Br] (1-hexyl-3-methylimidazolium bromide) and [C8mim][Br] (1-octyl-3-methylimidazolium bromide) at 0.1 MPa from 293.15 to 333.15 K. Conductivity measurements were also made for the binary water + [C6mim][Br] and water + [C8mim][Br] systems and their ternary water + [C6mim][Br] + [C8mim][Br] system at 0.1 MPa and 293.15, 298.15, and 303.15 K. The conductivity data of the pure ionic liquids were correlated by the VFT (Vogel-Tamman-Fulcher) equation, and the fitting parameters and mean absolute deviations were determined. New explanations are presented for the molality-dependent behavior of the conductivity of the binary water + [C6mim][Br] and water + [C8mim][Br] systems. The generalized Young’s rule and the semi-ideal solution theory for conductivity were used to predict the conductivities of the ternary water + [C6mim][Br] + [C8mim][Br] system from the conductivities of its corresponding binary water + [C6mim][Br] and water + [C8mim][Br] subsystems. The predictions are in good agreement with the measured values.
Similar content being viewed by others
Abbreviations
- a w :
-
water activity
- m :
-
molality, mol⋅(kg-H2O)−1
- x :
-
mole fraction
- v :
-
stoichiometric coefficient for ionization of an IL
- °:
-
the quantities of i in the binary (M i X i –H2O) solution having the same ionic strength as that of a mixed solution
References
Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)
Dupont, J., de Souza, R.F., Suarez, P.A.Z.: Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3692 (2002)
Welton, T.: Ionic liquids in catalysis. Coord. Chem. Rev. 248, 2459–2477 (2004)
Trulove, P.C., Mantz, R.A.: In: Wasserscheid, P., Welton, T. (eds.) Ionic Liquids in Synthesis, pp. 103–126. Wiley-VCH, Weinheim (2003)
Widegren, J.A., Saurer, E.M., Marsh, K.N., Magee, J.W.: Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity. J. Chem. Thermodyn. 37, 569–575 (2005)
Marsh, K.N., Boxall, J.A., Lichtenthaler, R.: Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib. 219, 93–98 (2004)
Fuller, J., Carlin, R.T., Osteryoung, R.A.: The room temperature ionic liquid 1-ethyl-3-methyl-imidazolium tetrafluoroborate: electrochemical couples and physical properties. J. Electrochem. Soc. 144, 3881–3885 (1997)
Sun, J., Forsyth, M., MacFarlane, D.R.: Room-temperature molten salts based on the quaternary ammonium ion. J. Phys. Chem. B 102, 8858–8864 (1998)
Vila, J., Ginés, P., Rilo, E., Cabeza, O., Varela, L.M.: Great increase of the electrical conductivity of ionic liquids in aqueous solutions. Fluid Phase Equilib. 247, 32–39 (2006)
Kragl, U., Eckstein, M., Kaftzik, N.: Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol. 13, 565–571 (2002)
Seddon, K.R., Stark, A., Torres, M.J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)
Yang, J.Z., Tong, J., Li, J.B., Li, J.G., Tong, J.: Surface tension of pure and water-containing ionic liquid C5MIBF4 (1-methyl-3-pentylimidazolium tetrafluoroborate). J. Colloid Interface Sci. 313, 374–377 (2007)
Mokhtarani, B., Sharifi, A., Mortaheb, H.R., Mirzaei, M., MafiMafi, M., Sadeghian, F.: Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures. J. Chem. Thermodyn. 41, 323–329 (2009)
Dong, B., Zhang, J., Zheng, L., Wang, S., Li, X., Inoue, T.: Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution. J. Colloid Interface Sci. 319, 338–343 (2008)
Wu, K., Zhang, Q., Liu, Q., Tang, F., Long, Y., Yao, S.: Ionic liquid surfactant-mediated ultrasonic-assisted extraction coupled to HPLC: application to analysis of tanshinones in Salvia miltiorrhiza bunge. J. Sep. Sci. 32, 4220–4226 (2009)
Fernándeza, J.F., Waterkampa, D., Thöminga, J.: Recovery of ionic liquids from wastewater: aggregation control for intensified membrane filtration. Desalination 224, 52–56 (2008)
Wang, J.J., Wang, H.Y., Zhang, S.L., Zhang, H.C., Zhao, Y.: Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [C n mim]Br (n=4, 6, 8, 10, 12) in aqueous solutions. J. Phys. Chem. B 111, 6181–6188 (2007)
Shekaari, H., Mousavi, S.S.: Conductometric studies of aqueous ionic liquids, 1-alkyl-3-methylimidazolium halide, solutions at T=298.15–328.15 K. Fluid Phase Equilib. 286, 120–126 (2009)
Ries, L.A.S., do Amaral, F.A., Matos, K.E., Martini, M.A., de Souza, M.O., de Souza, R.F.: Evidence of change in the molecular organization of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid solutions with the addition of water. Polyhedron 27, 3287–3293 (2008)
Hu, Y.F., Guo, T.M.: Effect of the structures of ionic liquids and alkylbenzene-derived amphiphiles on the inhibition of asphaltene precipitation from CO2-injected reservoir oils. Langmuir 21, 8168–8174 (2005)
Oblioscal, J.M., Arco, S.D., Huang, M.H.: Synthesis and optical properties of 1-alkyl-3-methylimidazolium lauryl sulfate ionic liquids. J. Fluoresc. 17, 613–618 (2007)
Liu, Y.S., Hu, Y.F., Hao, Q.C., Zhang, X.M., Liu, Z.C., Li, J.G.: Viscosity and density of the system NaCl + LaCl3 + H2O and its binary subsystems at different temperatures. J. Chem. Eng. Data 54, 739–744 (2009)
Nishida, T., Tashiro, Y., Yamamoto, M.: Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J. Fluorine Chem. 120, 135–141 (2003)
Kubo, W., Kitamura, T., Hanabusa, K., Wada, Y., Yanagida, S.: Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chem. Commun. 374–375 (2002)
Vila, J., Gines, P., Pico, J.M., Franjo, C., Jimenez, E., Varela, L.M., Cabeza, O.: Temperature dependence of the electrical conductivity in EMIM-based ionic liquids. Fluid Phase Equilib. 242, 141–146 (2006)
Crosthwaite, J.M., Muldoon, M.J., Dixon, J.K., Anderson, J.L., Brennecke, J.F.: Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn. 37, 559–568 (2005)
Law, G., Watson, P.R.: Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 17, 6138–6141 (2001)
Leys, J., Wübbenhorst, M., Menon, C.P., Rajesh, R., Thoen, J., Glorieux, C.: Temperature dependence of the electrical conductivity of imidazolium ionic liquids. J. Chem. Phys. 128, 064509 (2008)
Wang, Y.T., Voth, G.A.: Unique spatial heterogeneity in ionic liquids. J. Am. Chem. Soc. 127, 12192–12193 (2005)
Wang, Y.T., Voth, G.A.: Tail aggregation and domain diffusion in ionic liquids. J. Phys. Chem. B 110, 18601–18608 (2006) and the ref. 25 cited therein
Trioloa, A., Russina, O., Fazio, B., Triolo, R., Cola, E.D.: Morphology of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids. Chem. Phys. Lett. 457, 362–365 (2008) and Ref. 8 cited therein
Shirota, H., Funston, A.M., Wishart, J.F., Castner, E.W.J.: Ultrafast dynamics of pyrrolidinium cation ionic liquids. J. Chem. Phys. 122, 184512 (2005)
Santos, L.M.N.B.F., Canongia Lopes, J.N., Coutinho, J.A.P., Esperanca, J.M.S.S., Gomes, L.R., Marrucho, I.M., Rebelo, L.P.N.: Ionic liquids: first direct determination of their cohesive energy. J. Am. Chem. Soc. 129, 284–285 (2007)
Hu, Y.F.: Conformationally dependent nanodomains and their influences on transport properties of ionic liquids (2010, submitted for publication)
Avent, A.G., Chaloner, P.A., Day, M.P., Seddon, K.R., Welton, T.: Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room temperature halogenoaluminate(III) ionic liquids. J. Chem. Soc. Dalton Trans. 3405–3413 (1994)
Suarez, P.A., Einloft, S., Dullius, J.E.L., de Souza, R.F., Dupont, J.: Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J. Chim. Phys. 95, 1626–1639 (1998)
Rebelo, L.P.N., Canongia Lopes, J.N., Esperança, J.M.S.S., Guedes, H.J.R., Łachwa, J., Najdanovic-Visak, V., Visak, A.P.: Accounting for the unique, doubly dual nature of ionic liquids from a molecular thermodynamic and modeling standpoint. Acc. Chem. Res. 40, 1114–1121 (2007)
Pádua, A.A.H., Costa Gomes, M.F., Canongia Lopes, J.N.A.: Molecular solutes in ionic liquids: a structural perspective. Acc. Chem. Res. 40, 1087–1096 (2007)
Pópolo, M.G.D., Kohanoff, J., Lynden-bell, R.M., Pinilla, C.: Clusters, liquids, and crystals of dialkyimidazolium salts. A combined perspective from ab initio and classical computer simulations. Acc. Chem. Res. 40, 1156–1164 (2007)
Hu, Z.H., Margulis, C.J.: Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. Proc. Natl. Acad. Sci. USA 103, 831–836 (2006)
Seduraman, A., Klähn, M., Wu, P.: Characterization of nano-domains in ionic liquids with molecular simulations. Calphad 33, 605–613 (2009)
Jeon, Y., Sung, J., Kim, D., Seo, C., Cheong, H., Ouchi, Y., Ozawa, R., Hamaguchi, H.: Structural change of 1-butyl-3-methylimidazolium tetrafluoroborate + water mixtures studied by infrared vibrational spectroscopy. J. Phys. Chem. B 112, 923–928 (2008)
Bockris, J.O’M., Hooper, G.W.: Self-diffusion in molten alkali halides. Discuss. Faraday Soc. 32, 218–236 (1962)
Mohr, S.C., Wilk, W.D., Barrow, G.M.: The association of water with bases and anions in an inert solvent. J. Am. Chem. Soc. 87, 3048–3052 (1965)
Cammarata, L., Kazarian, S.G., Salter, P.A., Welton, T.: Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys. 3, 5192–5200 (2001)
Saha, S., Hamaguchi, H.: Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids. J. Phys. Chem. B 110, 2777–2781 (2006)
Miller, D.G.: Binary mixing approximations and relations between specific conductance, molar conductance, equivalent conductance, and ionar conductance for mixtures. J. Phys. Chem. 100, 1220–1226 (1996)
Wu, Y.C., Koch, W.F., Zhong, E.C., Friedman, H.L.: The cross-square rule for transport in electrolyte mixtures. J. Phys. Chem. 92, 1692–1695 (1988)
Hu, Y.F., Zhang, X.M., Li, J.G., Liang, Q.Q.: Semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions. J. Phys. Chem. B 112, 15376–15381 (2008)
Zdanovskii, A.B.: Trudy Solyanoi Laboratorii Akad. Nauk SSSR, No. 6 (1936)
Stokes, R.H., Robinson, R.A.: Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria. J. Phys. Chem. 70, 2126–2131 (1966)
Clegg, S.L., Seinfeld, J.H.: Improvement of the Zdanovskii-Stokes-Robinson model for mixtures containing solutes of different charge types. J. Phys. Chem. A 108, 1008–1017 (2004)
Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of {(1−y)H2SO4+yNa2SO4}(aq) at 298.15 K. I. Results for y=0.5 (NaHSO4) and y=0.55595,0.70189, and 0.84920. J. Chem. Thermodyn. 21, 539–560 (1989)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, JG., Hu, YF., Jin, CW. et al. Study on the Conductivities of Pure and Aqueous Bromide-Based Ionic Liquids at Different Temperatures. J Solution Chem 39, 1877–1887 (2010). https://doi.org/10.1007/s10953-010-9576-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-010-9576-z