Skip to main content
Log in

Molecular Recognition of Bridged Bis(β-cyclodextrin) Linked by the 4,4′-Diaminodiphenyl Sulfone Tether with Non-aromatic Oligopeptides

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The molecular recognition behavior of 4,4′-diaminodiphenyl sulfone bis(β-cyclodextrin) 1 with representative non-aromatic oligopeptides (Leu-Gly, Gly-Leu, Glu-Glu, Met-Met, Gly-Gly, Gly-Gly-Gly and Gly-Pro) was investigated by circular dichroism, fluorescence, 1H and 2D NMR spectroscopy at 25 °C in phosphate buffer solutions (pH=7.20). From the circular dichroism and 2D NMR results, it is inferred that the phenyl moiety in the linker of bis(β-cyclodextrin) is partly self-included in the cyclodextrin cavity, and it is entirely expelled out of the cyclodextrin cavity upon complexation with oligopeptides. Owing to the cooperative sandwich binding mode, bis(β-cyclodextrin) not only affords the highest binding constant of 29200 L⋅mol−1 for the tripeptide Gly-Gly-Gly, but it also can recognize the size and hydrophobicity of oligopeptides. The bis(β-cyclodextrin) gives an exciting residue selectivity of up to 78.9 for the Gly-Gly-Gly/Glu-Glu pair, and a higher length selectivity of up to 28.1 for the Gly-Gly-Gly/Gly-Gly pair. These phenomena are discussed from the viewpoint of the size-fit concept and multipoint recognition between host and guest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wenz, G.: Cyclodextrins as building blocks for supramolecular structures and functional units. Angew. Chem., Int. Ed. Engl. 33, 803–822 (1994)

    Article  Google Scholar 

  2. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  3. Berberan-Santos, M.N., Choppinet, P., Fedorov, A., Jullien, L., Valeur, B.: Multichromophoric cyclodextrins. 8. Dynamics of homo- and heterotransfer of excitation energy in inclusion complexes with fluorescent dyes. J. Am. Chem. Soc. 122, 11876–11886 (2000)

    Article  CAS  Google Scholar 

  4. Gadosy, T.A., Boyd, M.J., Tee, O.S.: Catalysis of ester aminolysis by cyclodextrins. The reaction of alkylamines with p-nitrophenyl alkanoates. J. Org. Chem. 65, 6879–6889 (2000)

    Article  CAS  Google Scholar 

  5. Jong, M.R., Knegtel, R.M.A., Grootenhuis, P.D.J., Huskens, J., Reinhoudt, D.N.: A method to identify and screen libraries of guests that complex to a synthetic host. Angew. Chem. Int. Ed. 41, 1004–1008 (2002)

    Article  Google Scholar 

  6. Breslow, R., Yang, Z., Ching, R.: Sequence selective binding of peptides by artificial receptors in aqueous solution. J. Am. Chem. Soc. 120, 3536–3537 (1998)

    Article  CAS  Google Scholar 

  7. Zhang, B., Breslow, R.: Enthalpic domination of the chelate effect in cyclodextrin dimers. J. Am. Chem. Soc. 115, 9353–9354 (1993)

    Article  CAS  Google Scholar 

  8. Hishiya, T., Asanuma, H., Komiyama, M.: Spectroscopic anatomy of molecular-imprinting of cyclodextrin: evidence for preferential formation of ordered cyclodextrin assemblies. J. Am. Chem. Soc. 124, 570–575 (2002)

    Article  CAS  Google Scholar 

  9. Benito, J.M., Garcia, M.G., Mellet, C.O., Baussanne, I., Defaye, J., Fernandez, J.M.G.: Optimizing saccharide-directed molecular delivery to biological receptors: design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates. J. Am. Chem. Soc. 126, 10355–10363 (2004)

    Article  CAS  Google Scholar 

  10. Liu, Y., Chen, Y.: Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 39, 681–691 (2006)

    Article  CAS  Google Scholar 

  11. Liu, Y., Yang, Y.W., Chen, Y., Ding, F.: Efficient fluorescent sensors of oligopeptides by dithiobis(2-benzoylamide)-bridged bis(β-cyclodextrin)s: structure in solution, binding behavior, and thermodynamic origin. Bioorg. Med. Chem. 13, 963–971 (2005)

    Article  CAS  Google Scholar 

  12. Zhao, Y., Liu, X.Q., Gu, J., Wang, L.Q., Zhu, H.Y., Huang, R., Wang, Y.F., Yang, Z.M.: Synthesis of novel bis(β-cyclodextrin)s linked with aromatic diamine and their molecular recognition with model substrates. J. Phys. Org. Chem. 21, 440–448 (2008)

    Article  CAS  Google Scholar 

  13. Zhao, Y., Gu, J., Chi, S.M., Yang, Y.C., Zhu, H.Y., Huang, R., Wang, Y.F.: Bis(β-cyclodextrin)s linked with aromatic diamine as fluorescent sensor for the molecular recognition of bile salts. J. Solution Chem. 38, 417–428 (2009)

    Article  CAS  Google Scholar 

  14. Zhao, Y., Yang, Z.M., Chi, S.M., Gu, J., Yang, Y.C., Huang, R., Wang, B.J., Zhu, H.Y.: Synthesis of novel bis(β-cyclodextrin)s linked with aromatic diamine and their molecular recognition with model substrates. Bull. Korean Chem. Soc. 29, 953–957 (2008)

    Article  Google Scholar 

  15. Peczuh, M.W., Hamilton, A.D.: Peptide and protein recognition by designed molecules. Chem. Rev. 100, 2479–2494 (2000)

    Article  CAS  Google Scholar 

  16. Maletic, M., Wennemers, H., McDonald, Q.D., Breslow, R., Still, W.C.: Selective binding of dipeptides L-Phe-D-Pro and D-Phe-L-Pro to β-cyclodextrin. Angew. Chem., Int. Ed. Engl. 35, 1490–1492 (1996)

    Article  CAS  Google Scholar 

  17. Tsubaki, K., Kusumoto, T., Hayashi, N., Nuruzzaman, M., Fuji, K.: Sequence-selective visual recognition of nonprotected dipeptides. Org. Lett. 4, 2313–2316 (2002)

    Article  CAS  Google Scholar 

  18. Liu, Y., Chen, G.S., Chen, Y., Ding, F., Liu, T., Zhao, Y.L.: Molecular binding behavior of pyridine-2,6-dicarboxamide-bridged bis(β-cyclodextrin with oligopeptides: switchable molecular binding mode). Bioconjugate Chem. 15, 300–306 (2004)

    Article  CAS  Google Scholar 

  19. Liu, Y., Zhao, Y.L., Chen, Y., Ding, F., Chen, G.S.: Binding behavior of aliphatic oligopeptides by bridged and metallobridged bis(β-cyclodextrin)s bearing an oxamido bis(2-benzoic) carboxyl linker. Bioconjugate Chem. 15, 1236–1245 (2004)

    Article  CAS  Google Scholar 

  20. Zhao, Y., Yang, Y.C., Chi, S.M., Shi, H., Zhao, Y., Zhu, H.Y., Li, Q.L., Wang, Y.F.: Fluorescence sensing and selective binding of a novel 4,4′-diaminodiphenyl sulfone bridged bis(β-cyclodextrin) for bile salts. Helv. Chim. Acta 98, 999–1011 (2009).

    Google Scholar 

  21. Park, J.W., Song, H.E., Lee, S.Y.: Facile dimerization and circular dichroism characteristics of 6-O-(2-sulfonato-6-naphthyl)-β-cyclodextrin. J. Phys. Chem. B 106, 5177–5183 (2002)

    Article  CAS  Google Scholar 

  22. Kajtar, M., Horvath-Toro, C., Kuthi, E., Szejtli, J.: A simple rule for predicting circular dichroism induced in aromatic guests by cyclodextrin hosts in inclusion complexes. Acta Chim. Acad. Sci. Hung. 110, 327–355 (1982)

    CAS  Google Scholar 

  23. Harata, K., Uedaira, H.: The circular dichroism spectra of the β-cyclodextrin complex with naphthalene derivatives. Bull. Chem. Soc. Jpn. 48, 375–378 (1975)

    Article  CAS  Google Scholar 

  24. Liu, Y., Song, Y., Chen, Y., Li, X.Q., Ding, F., Zhong, R.Q.: Biquinolino-modified β-cyclodextrin dimers and their metal complexes as efficient fluorescent sensors for the molecular recognition of steroids. Chem. Eur. J. 10, 3685–3696 (2004)

    Article  CAS  Google Scholar 

  25. Benesi, H.A., Hidebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  26. Shukla, A.D., Bajaj, H.C., Das, A.: Beta-cyclodextrin-assisted intervalence charge transfer in mixed-valent. Angew. Chem., Int. Ed. 40, 446–448 (2001)

    Article  CAS  Google Scholar 

  27. Kawaguchi, Y., Harada, A.: A cyclodextrin-based molecular shuttle containing energetically favored and disfavored portions in its dumbbell component. Org. Lett. 2, 1353–1356 (2000)

    Article  CAS  Google Scholar 

  28. Liu, Y., Chen, G.S., Zhang, H.Y., Song, H.B., Ding, F.: Interaction between β-cyclodextrin and 1,10-phenanthroline: uncommon 2:3 inclusion complex in the solid state. Carbohyd. Res. 339, 1649–1654 (2004)

    Article  CAS  Google Scholar 

  29. Schneider, H.-J., Hacket, F., Rudiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1786 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Yang, Y.C., Shi, H. et al. Molecular Recognition of Bridged Bis(β-cyclodextrin) Linked by the 4,4′-Diaminodiphenyl Sulfone Tether with Non-aromatic Oligopeptides. J Solution Chem 39, 987–998 (2010). https://doi.org/10.1007/s10953-010-9564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9564-3

Keywords

Navigation