Abstract
The molecular recognition behavior of 4,4′-diaminodiphenyl sulfone bis(β-cyclodextrin) 1 with representative non-aromatic oligopeptides (Leu-Gly, Gly-Leu, Glu-Glu, Met-Met, Gly-Gly, Gly-Gly-Gly and Gly-Pro) was investigated by circular dichroism, fluorescence, 1H and 2D NMR spectroscopy at 25 °C in phosphate buffer solutions (pH=7.20). From the circular dichroism and 2D NMR results, it is inferred that the phenyl moiety in the linker of bis(β-cyclodextrin) is partly self-included in the cyclodextrin cavity, and it is entirely expelled out of the cyclodextrin cavity upon complexation with oligopeptides. Owing to the cooperative sandwich binding mode, bis(β-cyclodextrin) not only affords the highest binding constant of 29200 L⋅mol−1 for the tripeptide Gly-Gly-Gly, but it also can recognize the size and hydrophobicity of oligopeptides. The bis(β-cyclodextrin) gives an exciting residue selectivity of up to 78.9 for the Gly-Gly-Gly/Glu-Glu pair, and a higher length selectivity of up to 28.1 for the Gly-Gly-Gly/Gly-Gly pair. These phenomena are discussed from the viewpoint of the size-fit concept and multipoint recognition between host and guest.
Similar content being viewed by others
References
Wenz, G.: Cyclodextrins as building blocks for supramolecular structures and functional units. Angew. Chem., Int. Ed. Engl. 33, 803–822 (1994)
Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)
Berberan-Santos, M.N., Choppinet, P., Fedorov, A., Jullien, L., Valeur, B.: Multichromophoric cyclodextrins. 8. Dynamics of homo- and heterotransfer of excitation energy in inclusion complexes with fluorescent dyes. J. Am. Chem. Soc. 122, 11876–11886 (2000)
Gadosy, T.A., Boyd, M.J., Tee, O.S.: Catalysis of ester aminolysis by cyclodextrins. The reaction of alkylamines with p-nitrophenyl alkanoates. J. Org. Chem. 65, 6879–6889 (2000)
Jong, M.R., Knegtel, R.M.A., Grootenhuis, P.D.J., Huskens, J., Reinhoudt, D.N.: A method to identify and screen libraries of guests that complex to a synthetic host. Angew. Chem. Int. Ed. 41, 1004–1008 (2002)
Breslow, R., Yang, Z., Ching, R.: Sequence selective binding of peptides by artificial receptors in aqueous solution. J. Am. Chem. Soc. 120, 3536–3537 (1998)
Zhang, B., Breslow, R.: Enthalpic domination of the chelate effect in cyclodextrin dimers. J. Am. Chem. Soc. 115, 9353–9354 (1993)
Hishiya, T., Asanuma, H., Komiyama, M.: Spectroscopic anatomy of molecular-imprinting of cyclodextrin: evidence for preferential formation of ordered cyclodextrin assemblies. J. Am. Chem. Soc. 124, 570–575 (2002)
Benito, J.M., Garcia, M.G., Mellet, C.O., Baussanne, I., Defaye, J., Fernandez, J.M.G.: Optimizing saccharide-directed molecular delivery to biological receptors: design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates. J. Am. Chem. Soc. 126, 10355–10363 (2004)
Liu, Y., Chen, Y.: Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 39, 681–691 (2006)
Liu, Y., Yang, Y.W., Chen, Y., Ding, F.: Efficient fluorescent sensors of oligopeptides by dithiobis(2-benzoylamide)-bridged bis(β-cyclodextrin)s: structure in solution, binding behavior, and thermodynamic origin. Bioorg. Med. Chem. 13, 963–971 (2005)
Zhao, Y., Liu, X.Q., Gu, J., Wang, L.Q., Zhu, H.Y., Huang, R., Wang, Y.F., Yang, Z.M.: Synthesis of novel bis(β-cyclodextrin)s linked with aromatic diamine and their molecular recognition with model substrates. J. Phys. Org. Chem. 21, 440–448 (2008)
Zhao, Y., Gu, J., Chi, S.M., Yang, Y.C., Zhu, H.Y., Huang, R., Wang, Y.F.: Bis(β-cyclodextrin)s linked with aromatic diamine as fluorescent sensor for the molecular recognition of bile salts. J. Solution Chem. 38, 417–428 (2009)
Zhao, Y., Yang, Z.M., Chi, S.M., Gu, J., Yang, Y.C., Huang, R., Wang, B.J., Zhu, H.Y.: Synthesis of novel bis(β-cyclodextrin)s linked with aromatic diamine and their molecular recognition with model substrates. Bull. Korean Chem. Soc. 29, 953–957 (2008)
Peczuh, M.W., Hamilton, A.D.: Peptide and protein recognition by designed molecules. Chem. Rev. 100, 2479–2494 (2000)
Maletic, M., Wennemers, H., McDonald, Q.D., Breslow, R., Still, W.C.: Selective binding of dipeptides L-Phe-D-Pro and D-Phe-L-Pro to β-cyclodextrin. Angew. Chem., Int. Ed. Engl. 35, 1490–1492 (1996)
Tsubaki, K., Kusumoto, T., Hayashi, N., Nuruzzaman, M., Fuji, K.: Sequence-selective visual recognition of nonprotected dipeptides. Org. Lett. 4, 2313–2316 (2002)
Liu, Y., Chen, G.S., Chen, Y., Ding, F., Liu, T., Zhao, Y.L.: Molecular binding behavior of pyridine-2,6-dicarboxamide-bridged bis(β-cyclodextrin with oligopeptides: switchable molecular binding mode). Bioconjugate Chem. 15, 300–306 (2004)
Liu, Y., Zhao, Y.L., Chen, Y., Ding, F., Chen, G.S.: Binding behavior of aliphatic oligopeptides by bridged and metallobridged bis(β-cyclodextrin)s bearing an oxamido bis(2-benzoic) carboxyl linker. Bioconjugate Chem. 15, 1236–1245 (2004)
Zhao, Y., Yang, Y.C., Chi, S.M., Shi, H., Zhao, Y., Zhu, H.Y., Li, Q.L., Wang, Y.F.: Fluorescence sensing and selective binding of a novel 4,4′-diaminodiphenyl sulfone bridged bis(β-cyclodextrin) for bile salts. Helv. Chim. Acta 98, 999–1011 (2009).
Park, J.W., Song, H.E., Lee, S.Y.: Facile dimerization and circular dichroism characteristics of 6-O-(2-sulfonato-6-naphthyl)-β-cyclodextrin. J. Phys. Chem. B 106, 5177–5183 (2002)
Kajtar, M., Horvath-Toro, C., Kuthi, E., Szejtli, J.: A simple rule for predicting circular dichroism induced in aromatic guests by cyclodextrin hosts in inclusion complexes. Acta Chim. Acad. Sci. Hung. 110, 327–355 (1982)
Harata, K., Uedaira, H.: The circular dichroism spectra of the β-cyclodextrin complex with naphthalene derivatives. Bull. Chem. Soc. Jpn. 48, 375–378 (1975)
Liu, Y., Song, Y., Chen, Y., Li, X.Q., Ding, F., Zhong, R.Q.: Biquinolino-modified β-cyclodextrin dimers and their metal complexes as efficient fluorescent sensors for the molecular recognition of steroids. Chem. Eur. J. 10, 3685–3696 (2004)
Benesi, H.A., Hidebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)
Shukla, A.D., Bajaj, H.C., Das, A.: Beta-cyclodextrin-assisted intervalence charge transfer in mixed-valent. Angew. Chem., Int. Ed. 40, 446–448 (2001)
Kawaguchi, Y., Harada, A.: A cyclodextrin-based molecular shuttle containing energetically favored and disfavored portions in its dumbbell component. Org. Lett. 2, 1353–1356 (2000)
Liu, Y., Chen, G.S., Zhang, H.Y., Song, H.B., Ding, F.: Interaction between β-cyclodextrin and 1,10-phenanthroline: uncommon 2:3 inclusion complex in the solid state. Carbohyd. Res. 339, 1649–1654 (2004)
Schneider, H.-J., Hacket, F., Rudiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1786 (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhao, Y., Yang, Y.C., Shi, H. et al. Molecular Recognition of Bridged Bis(β-cyclodextrin) Linked by the 4,4′-Diaminodiphenyl Sulfone Tether with Non-aromatic Oligopeptides. J Solution Chem 39, 987–998 (2010). https://doi.org/10.1007/s10953-010-9564-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-010-9564-3