Skip to main content
Log in

Raman and Infrared Spectroscopic Investigation of Speciation in BeSO4(aq)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Measurements have been made of the Raman spectra of aqueous solutions of Be(ClO4)2, BeCl2, (NH4)2SO4 and BeSO4 to 50 cm−1. In some cases low concentrations (0.000770 mol⋅kg−1) have been used and two temperatures (23 and 40 °C) were studied. In BeSO4(aq), the ν 1-\(\mathrm{SO}_{4}^{2-}\) mode at 980 cm−1 broadens with increasing concentration and shifts to higher wavenumbers. At the same time, a band at 1014 cm−1 is detectable with this mode being assigned to [BeOSO3], an inner-sphere complex (ISC). Confirmation of this assignment is provided by the simultaneous appearance of stretching bands for the \(\mathrm{Be}^{2+}\mbox{-}\mathrm{OSO}_{3}^{2-}\) bond of the complex at 240 cm−1 and for the BeO4 skeleton mode of the [(H2O)3BeOSO3] unit at 498 cm−1. The ISC concentration increases with higher temperatures. The similarity of the \(\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-}\) Raman bands for BeSO4 in H2O and D2O is further strong evidence for formation of an ISC. After subtraction of the ISC component at 1014 cm−1, the \(\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-}\) band in BeSO4(aq) showed systematic differences from that in (NH4)2SO4(aq). This is consistent with a \(\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-}\) mode at 982.7 cm−1 that can be assigned to the occurrence of an outer-sphere complex ion (OSCs). These observations are shown to be in agreement with results derived from previous relaxation measurements. Infrared spectroscopic data show features that are also consistent with a beryllium sulfato complex such as the appearance of a broad and weak \(\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-}\) mode at ∼1014 cm−1, normally infrared forbidden, and a broad and asymmetric \(\nu_{3}\mbox{-}\mathrm{SO}_{4}^{2-}\) band contour which could be fitted with four band components (including \(\nu_{3}\mbox{-}\mathrm{SO}_{4}^{2-}(\mathrm{aq})\)). The formation of ISCs in BeSO4(aq) is much more pronounced than in the similar MgSO4(aq) system studied recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong, C.Y., Woollins, J.D.: Beryllium coordination chemistry. Coord. Chem. Rev. 130, 243–273 (1994)

    Article  CAS  Google Scholar 

  2. Bell, N.A.: Beryllium halides and pseudohalides. Adv. Inorg. Chem. Radiochem. 14, 255–332 (1972)

    CAS  Google Scholar 

  3. Georgiev, M., Karadjova, V., Marinova, D., Stoilova, D.: Study on the hydrates of beryllium sulfate and selenate: thermal analysis, X-ray diffraction and infrared spectroscopy. J. Univ. Chem. Technol. Metall. 43, 139–148 (2008)

    CAS  Google Scholar 

  4. Dance, I.G., Freeman, H.C.: Refinement of the crystal structure of beryllium sulfate tetrahydrate. Acta Crystallogr. B25, 304–310 (1969)

    Google Scholar 

  5. Sikka, S.K., Chidambbaram, K.: A neutron diffraction determination of the structure of beryllium sulfate tetrahydrate, BeSO4⋅4H2O. Acta Crystallogr. B25, 310–315 (1969)

    Google Scholar 

  6. Kellersohn, T., Delaplane, R.G., Olovsson, I.: The synergetic effect in beryllium sulfate tetrahydrate- an experimental electron-density study. Acta Crystallogr. B50, 316–326 (1994)

    CAS  Google Scholar 

  7. Zhang, Z., Lutz, H.D., Georgiev, M., Manev, M.: The first beryllium periodate: Be(H4IO6)2⋅4H2O. Acta Crystallogr. C52, 2660–2662 (1996)

    CAS  Google Scholar 

  8. Pigenet, C.: Activites Raman et Infrarouge des cristaux Piezo electriques BeSO4⋅4H2O et BeSO4⋅4D2O. J. Raman Spectrosc. 13, 66–77 (1982)

    Article  CAS  Google Scholar 

  9. Fricke, R., Schützdeller, H.: Untersuchungen über Hydrate in wäßriger Lösung. I. Mitteilung: Das Berylliumion. Z. Anorg. Allg. Chem. 131, 130–139 (1923)

    Article  CAS  Google Scholar 

  10. Alei, M., Jackson, J.A.: NMR determination of the hydration numbers of cations in aqueous perchlorate solutions. J. Chem. Phys. 41, 3402–3404 (1964)

    Article  CAS  Google Scholar 

  11. Connick, R.E., Fiat, D.N.: Coordination numbers of beryllium and aluminium ions in aqueous solutions. J. Chem. Phys. 39, 1349–1351 (1963)

    Article  CAS  Google Scholar 

  12. Pittet, P.A., Elbaze, G., Helm, L., Merbach, A.E.: Tetrasolventoberyllium(II): high-pressure evidence for a sterically controlled solvent-exchange-mechanism crossover. Inorg. Chem. 29, 1936– 1942 (1990)

    Article  Google Scholar 

  13. Rudolph, W.W., Fischer, D., Irmer, G., Pye, C.C.: Hydration of beryllium(II) in aqueous solutions of common inorganic salts. A combined vibrational spectroscopic and ab initio molecular orbital study. Dalton Trans. 7, 6513–6527 (2009)

    Article  Google Scholar 

  14. Rudolph, W.W., Irmer, G., Hefter, G.T.: Raman spectroscopic investigation of speciation in MgSO4(aq). Phys. Chem. Chem. Phys. 5, 5253–5261 (2003)

    Article  CAS  Google Scholar 

  15. Akilan, C., Rohman, N., Hefter, G., Buchner, R.: Temperature effects on ion association and hydration in MgSO4 by dielectric spectroscopy. Chem. Phys. Chem. 7, 2319–2330 (2006)

    CAS  Google Scholar 

  16. Vogel, A.I.: A Text-Book of Quantitative Inorganic Analysis, 3rd edn. Longman, London (1961)

    Google Scholar 

  17. Rudolph, W.W., Irmer, G.: Raman and infrared spectroscopic investigations on aqueous alkali metal phosphate solutions and density functional theory calculations of phosphate–water clusters. Appl. Spectrosc. 61, 1312–1327 (2007)

    Article  CAS  Google Scholar 

  18. Rudolph, W.W., Fischer, D., Irmer, G.: Vibrational spectroscopy studies and density functional theory calculations in the CO2-water system. Appl. Spectrosc. 60, 130–144 (2006)

    Article  CAS  Google Scholar 

  19. Rudolph, W.W.: Hydration and water-ligand replacement in aqueous cadmium(II) sulfate solution: a Raman and infrared study. Faraday Trans. 92, 489–499 (1998)

    Article  Google Scholar 

  20. Rudolph, W.W., Brooker, M.H., Pye, C.C.: Hydration of lithium ion in aqueous solution. J. Phys. Chem. 99, 3793–3797 (1995)

    Article  CAS  Google Scholar 

  21. Rudolph, W., Steger, E.: Dissoziation, Struktur und schneller Protonenaustausch der Phosphorsäure in verdünnter wäßriger Lösung. Z. Phys. Chem. 172, 49–59 (1995)

    Google Scholar 

  22. Pye, C.C., Rudolph, W.W., Poirier, R.A.: An ab initio investigation of lithium ion hydration. J. Phys. Chem. 100, 601–605 (1996)

    Article  CAS  Google Scholar 

  23. Marcus, Y.: Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370 (2009); See especially Chap. 4.3.1

    Article  CAS  Google Scholar 

  24. Rudolph, W., Schönherr, S.: I. Zur schwingungsspektroskopischen Charakterisierung des Hexaquoaluminium(III)-Komplexions. Z. Phys. Chem. (Leipzig) 270, 1121–1134 (1989)

    CAS  Google Scholar 

  25. Rudolph, W., Schönherr, S.: II. Zur Sulfatokomplexbildung in Aluminiumsulfat – Lösungen und Hydratschmelzen. Z. Phys. Chem. 172, 31–48 (1991)

    CAS  Google Scholar 

  26. Rudolph, W., Schönherr, S.: III. Valenz- und Deformationsschwingungsbereich des Wassers des Hexaquoaluminium(III)-Komplexions. Z. Phys. Chem. 173, 167–177 (1991)

    CAS  Google Scholar 

  27. Musinu, A., Paschina, G., Piccaluga, G.: On the structure of the \(\mathrm{NH}_{4}^{+}\) ion in aqueous solution. Chem. Phys. Lett. 80, 163–167 (1981)

    CAS  Google Scholar 

  28. Vollmar, P.M.: Ionic interactions in aqueous solution: a Raman spectral study. J. Chem. Phys. 39, 2236–2248 (1963)

    Article  CAS  Google Scholar 

  29. Rudolph, W.: Structure and dissociation of hydrogen sulfate ion in aqueous solution over a broad temperature range: a Raman study. Z. Phys. Chem. 194, 73–95 (1996)

    CAS  Google Scholar 

  30. Pye, C.C., Rudolph, W.W.: An ab initio and Raman investigation of Mg(II) hydration. J. Phys. Chem. A 102, 9933–9943 (1998)

    Article  CAS  Google Scholar 

  31. Walrafen, G.E., Hokmabadi, M.S., Yang, W.-H., Chu, Y.C., Monosmith, B.: Collision-induced Raman, scattering from water and aqueous solutions. J. Phys. Chem. 93, 2909–2917 (1989)

    Article  CAS  Google Scholar 

  32. Rudolph, W.W., Mason, R.: Studies of aqueous Al2(SO4)3 solutions under hydrothermal conditions: sulfate ion pairing, hydrolysis and the formation of hydronium alunite. J. Solution Chem. 30, 527–548 (2001)

    Article  CAS  Google Scholar 

  33. Rudolph, W.W., Mason, R., Pye, C.C.: Aluminium(III) hydration in aqueous solution: a Raman spectroscopic investigation and an ab initio molecular orbital study of aluminium(III) water clusters. Phys. Chem. Chem. Phys. 2, 5030–5040 (2000)

    Article  CAS  Google Scholar 

  34. Rudolph, W.W., Pye, C.C.: Gallium(III) hydration in aqueous solution of perchlorate, nitrate and sulfate. Raman and 71-Ga NMR spectroscopic studies and ab-initio molecular orbital calculations of gallium(III) water clusters. Phys. Chem. Chem. Phys. 4, 4319–4327 (2002)

    Article  CAS  Google Scholar 

  35. Rudolph, W.W., Fischer, D., Tomney, M.R., Pye, C.C.: Indium(III) hydration in aqueous solution of perchlorate, nitrate and sulfate. Raman and infrared spectroscopic studies and ab-initio molecular orbital calculations of indium(III) water clusters. Phys. Chem. Chem. Phys. 6, 5145–5155 (2004)

    Article  CAS  Google Scholar 

  36. Ohtaki, H.: Ionic equilibria in mixed solvents. I. Hydrolysis of beryllium ion in a 0.2 mole fractin dioxane-water mixture containing 3 M LiClO4 as an ionic medium. Inorg. Chem. 6, 808–813 (1967)

    Article  CAS  Google Scholar 

  37. Brown, P.L., Elis, J., Sylva, R.N.: The hydrolysis of metal ions. Part 7. Beryllium(II). J. Chem. Soc. Dalton Trans., 2001–2004 (1983)

  38. Wood, S.A.: Theoretical prediction of speciation and solubility of beryllium in hydrothermal solution to 300 °C at saturated vapour pressure: application to bertrandite/phenakite deposits. Ore Geol. Rev. 7, 249–278 (1992)

    Article  Google Scholar 

  39. Bruno, J.: Beryllium(II) hydrolysis in 3.0 mol dm−3 perchlorate. J. Chem. Soc. Dalton Trans., 2431–2437 (1987)

  40. Prytz, M.: Hydrolysemessungen in Berylliumsalzlösungen. Z. anorg. Chem. 180, 355–369 (1929)

    Article  CAS  Google Scholar 

  41. Armishaw, R.F., James, D.W.: Structure of aqueous solutions relative intensity studies of the infrared librational band in nitrate solutions. J. Phys. Chem. 80, 501–508 (1976)

    Article  CAS  Google Scholar 

  42. Brumm, P., Rüppel, H.: Kinetische Untersuchungen an Berylliumsulfat durch repetierende Temperatursprunganregung. Ber. Bunsenges. Phys. Chem. 75, 102–106 (1971)

    CAS  Google Scholar 

  43. Diebler, H., Eigen, M.: Das Relaxationszeitspektrum der chemischen Gleichgewichtseinstellung in wäßrigen lösungen von Berylliumsulfat. Z. Phys. Chem. NF 20, 299–306 (1959)

    CAS  Google Scholar 

  44. Eigen, M., Tamm, K.: Schallabsorption in Elektrolytlösungen als Folge chemischer relaxation. i. Relaxationstheorie der mehrstufigen Dissoziation. Z. Elektrochem. 66, 93–107 (1962)

    CAS  Google Scholar 

  45. Eigen, M., Tamm, K.: Schallabsorption in Elektrolytlösungen als Folge chemischer Relaxation. II. Meßergebnisse und Relaxationsmechanismen für 2-2–wertigen Elektrolyte. Z. Elektrochem. 66, 107–121 (1962)

    CAS  Google Scholar 

  46. Rudolph, W.W., Irmer, G.: Unpublished results, TU Dresden (2004)

  47. Wei, Z.-F., Zhang, Y.-H., Zhao, L.-J., Liu, J.-H., Li, X.-H.: Observation of the first hydration layer of isolated cations and anions through the FTIR-ATR difference spectra. J. Phys. Chem. A 109, 1337–1342 (2005)

    Article  CAS  Google Scholar 

  48. James, D.W., Frost, R.L.: Ion-ion-solvent interactions in solution: aqueous solutions of nitrates of cations from Groups 2A and 3A. Aust. J. Chem. 35, 1793–1806 (1982)

    Google Scholar 

  49. James, D.W., Carrick, M.T., Frost, R.L.: Structure of aqueous solutions: Fourier transformation and band component analysis in magnesium nitrate solutions. J. Raman Spectrosc. 13, 115–119 (1982)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram W. Rudolph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, W.W. Raman and Infrared Spectroscopic Investigation of Speciation in BeSO4(aq). J Solution Chem 39, 1039–1059 (2010). https://doi.org/10.1007/s10953-010-9555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9555-4

Keywords

Navigation