Skip to main content
Log in

MP2 Study on the Stacking Interactions Between 2-Hydroxyadenine and Four DNA Bases

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

MP2 calculations were used to perform an energy scan of 2-hydroxyadenine (2-OH-A) stacked with four canonical DNA bases. The structures that were studied correspond to potential energy surface points of B-DNA. Eight stacking complexes were analyzed in detail: 5′-2-OH-A/A-3′, 5′-2-OH-A/C-3′, 5′-2-OH-A/G-3′, 5′-2-OH-A/T-3′, 5′-A/2-OH-A-3′, 5′-C/2-OH-A-3′, 5′-G/2-OH-A-3′, and 5′-T/2-OH-A-3′. The stabilization energy, including electron correlation terms, suggests that the 5′-G/2-OH-A-3′ pair is the most stable among all of the studied complexes. The dependence of the stacking energy on the vertical separation and on the twist angle between the two stacked bases were studied in great detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavel, H.: Stacking interactions. Phys. Chem. Chem. Phys. 10, 2581–2583 (2008). doi:10.1039/b805489b

    Google Scholar 

  2. Yakovchuk, P., Protozanova, E., Frank-Kamenetskii, M.D.: Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucl. Acids Res. 34, 564–574 (2006). doi:10.1093/nar/gkj454

    Article  CAS  Google Scholar 

  3. Suzuki, M., Amano, N., Kakinuma, J., Tateno, M.: Use of a 3D structure data base for understanding sequence-dependent conformational aspects of DNA. J. Mol. Biol. 274, 421–435 (1997). doi:10.1006/jmbi.1997.1406

    Article  CAS  Google Scholar 

  4. Burkard, M.E., Kierzek, R., Turner, D.H.: Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs. J. Mol. Biol. 290, 967–982 (1999). doi:10.1006/jmbi.1999.2906

    Article  CAS  Google Scholar 

  5. Wu, P.G., Nordlund, T.M., Gildea, B., McLaughlin, L.W.: Base stacking and unstacking as determined from a DNA decamer containing a fluorescent base. Biochemistry 29, 6508–6514 (1990). doi:10.1021/bi00479a024

    Article  CAS  Google Scholar 

  6. Swart, M., van der Wijst, T., Fonseca Guerra, C., Bickelhaupt, F.M.: π-π stacking tackled with density functional theory. J. Mol. Model. 13, 1245–1257 (2007). doi:10.1007/s00894-007-0239-y

    Article  CAS  Google Scholar 

  7. Gu, J.D., Wang, J., Leszczynski, J., Xie, Y.M., Schaefer, H.F. III: To stack or not to stack: performance of a new density functional for the uracil and thymine dimmers. Chem. Phys. Lett. 459, 164–166 (2008). doi:10.1016/j.cplett.2008.05.049

    Article  CAS  Google Scholar 

  8. Cysewski, P., Czyżnikowska-Balcerak, Ż.: The MP2 quantum chemistry study on the local minima of guanine stacked with all four nucleic acid bases in conformations corresponding to mean B-DNA. J. Mol. Struct. (Theochem) 757, 29–36 (2005). doi:10.1016/j.theochem.2005.06.014

    Article  CAS  Google Scholar 

  9. Cysewski, P., Czyżnikowska-Balcerak, Ż.: A post-SCF quantum chemistry study on local minima of 8-oxo-guanine stacked with all four nucleic acid bases in B-DNA conformations. J. Heterocycl. Chem. 44, 765–773 (2007). doi:10.1002/jhet.5570440403

    Article  CAS  Google Scholar 

  10. Hill, G., Forde, G., Hill, N., Lester, W.A. Jr., Sokalski, W.A., Leszczynski, J.: Interaction energies in stacked DNA bases? How important are electrostatics?. Chem. Phys. Lett. 381, 729–732 (2003). doi:10.1016/j.cplett.2003.09.076

    Article  CAS  Google Scholar 

  11. Czyżnikowska, Ż., Zaleśny, R.: Theoretical insights into the nature of intermolecular interactions in cytosine dimmer. Biophys. Chem. 139, 137–143 (2009). doi:10.1016/j.bpc.2008.11.001

    Article  Google Scholar 

  12. Lechoslaw, L., Renata, J.: Noncovalent interaction of uridine 5′-monophosphate with adenosine, cytidine, and thymidine, as well as adenosine 5′-monophosphate and cytidine 5′-monophosphate in aqueous solution. J. Solution Chem. 35, 161–177 (2006). doi:10.1007/s10953-006-9376-7

    Article  Google Scholar 

  13. Hobza, P., Šponer, J., Polášek, M.: H-Bonded and stacked DNA base pairs: cytosine dimer. An ab initio second-order Moeller-Plesset study. J. Am. Chem. Soc. 117, 792–798 (1995). doi:10.1021/ja00107a023

    Article  CAS  Google Scholar 

  14. Šponer, J., Gabb, H.A., Leszczyński, J., Hobza, P.: Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study. Biophys. J. 73, 76–87 (1997). doi:10.1016/S0006-3495(97)78049-4

    Article  Google Scholar 

  15. Tsuzuki, S., Luthi, P.: Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: assessing the PW91 model. J. Chem. Phys. 114, 3949–3957 (2001). doi:10.1063/1.1344891

    Article  CAS  Google Scholar 

  16. Sinnokrot, M.O., Sherrill, D.: Highly accurate coupled cluster potential energy curves for the benzene dimer: sandwich, T-Shaped, and parallel-displaced configurations. J. Phys. Chem. A 108, 10200–10207 (2004). doi:10.1021/jp0469517

    Article  CAS  Google Scholar 

  17. Cysewski, P.: Structure and properties of hydroxyl radical modified nucleic acid components: pairing properties of 2-hydroxyadenine and 8-oxoadenine. J. Mol. Struct. (Theochem) 466, 59–67 (1999). doi:10.1016/S0166-1280(98)00341-8

    Article  CAS  Google Scholar 

  18. Lu, X.J., Wilma, K.: DNA (v1.4.1). Olson Laboratory, Rutgers University, Piscataway (2001)

    Google Scholar 

  19. Boys, S.F., Bemardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970). doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  20. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.E., Brice, M.D. Jr., Rodgers, J.R.: The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977). doi:10.1016/S0022-2836(77)80200-3

    Article  CAS  Google Scholar 

  21. Baerman, H.M., Olson, K.W., Beveridge, D.L.: The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63, 751–759 (1992). doi:10.1016/S0006-3495(92)81649-1

    Article  Google Scholar 

  22. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T.J., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Aghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian03. Gaussian, Pittsburgh (2003)

    Google Scholar 

  23. Kabelac, M., Ryjacek, F., Hobza, P.: Already two water molecules change planar H-bonded structures of the adenine⋅⋅⋅thymine base pair to the stacked ones: a molecular dynamics simulations study. Phys. Chem. Chem. Phys. 2, 4906–4909 (2000). doi:10.1039/b007167f

    Article  CAS  Google Scholar 

  24. Li, Q.Z., Wang, N.N., Yu, Z.W.: Effect of hydration on the CH…O hydrogen bond: a theoretical study. J. Mol. Struct. (Theochem) 847, 68–74 (2007). doi:10.1016/j.theochem.2007.08.035

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Z., Xia, Y. & Wang, H. MP2 Study on the Stacking Interactions Between 2-Hydroxyadenine and Four DNA Bases. J Solution Chem 39, 770–777 (2010). https://doi.org/10.1007/s10953-010-9545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9545-6

Keywords

Navigation