Skip to main content

Advertisement

Log in

The Formation of Cu(II) Complexes with Carbonate and Bicarbonate Ions in NaClO4 Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The inorganic behavior of most divalent metals in natural waters is affected by the formation of carbonate complexes. The acidification of the oceans will lower the carbonate concentration in the oceans. This will increase the concentration of free copper that is toxic to marine organisms. To be able to determine the effect of this acidification, reliable stability constants are needed for the formation of copper carbonate complexes. In this paper, the speciation of Cu(II) with bicarbonate and carbonate ions

$$\begin{array}{rcl}&&\mathrm{Cu}^{2+}+\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{CuCO}_{3(\mathrm{aq})}+\mathrm{H}^{+}\\[4pt]&&\mathrm{Cu}^{2+}+2\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{Cu}(\mathrm{CO}_{3})_{2}^{2-}+2\mathrm{H}^{+}\\[4pt]&&\mathrm{Cu}^{2+}+\mathrm{CO}_{3}^{2-}\rightleftharpoons \mathrm{CuCO}_{3(\mathrm{aq})}\\[4pt]&&\mathrm{Cu}^{2+}+2\mathrm{CO}_{3}^{2-}\rightleftharpoons \mathrm{Cu}(\mathrm{CO}_{3})_{2}^{2-}\\[4pt]&&\mathrm{Cu}^{2+}+\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{CuHCO}_{3}^{+}\end{array}$$

is investigated as a function of ionic strength and temperature in NaClO4 solutions.

To fully examine the system, the dissociation of carbonic acid in the media were examined using the Pitzer equations in NaClO4 solutions to 6.5 mol⋅kg−1 at 25 °C. With this foundation, the stability constants for the formation of Cu(II) carbonate complexes were used to determine the activity coefficients for the complexes (\(\mathrm{CuHCO}_{3}^{+}\), CuCO3, \(\mathrm{Cu}(\mathrm{CO}_{3})_{2}^{2-})\). Pitzer parameters for these complexes were determined at 25 °C and ionic strength (0 to 1.1 mol⋅kg−1) in NaClO4 solutions. Since the formation of Cu(II) carbonate complexes appear to be linearly related to the values for other metals, it is possible to use the correlations to estimate the carbonate constants for a number of other divalent metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Millero, F.J., Hawke, D.J.: Ionic interactions of divalent metals in natural waters. Mar. Chem. 40, 19–48 (1992)

    Article  CAS  Google Scholar 

  2. Millero, F.J., Pierrot, D.: Speciation of metals in natural waters. In: Gianguzza, A., Pellizzetti, E., Sammartano, S. (eds.) Chemistry of Marine Water and Sediments, pp. 193–220. Springer, Berlin (2002)

    Google Scholar 

  3. Brand, L.E., Sunda, W.G., Guillard, R.R.L.: Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96, 225–250 (1986)

    Article  CAS  Google Scholar 

  4. Millero, F.J., Woosley, R., DiTrolio, B., Waters, J.: The effect of ocean acidification on the speciation of metals in natural waters, Oceanography (2009, in press)

  5. Harvie, C.E., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: The Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO3–H2O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta 48, 723–752 (1984)

    Article  CAS  Google Scholar 

  6. Harvie, C.E., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–SO4–Cl–H2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta 44, 981–997 (1980)

    Article  CAS  Google Scholar 

  7. Millero, F.J., Pierrot, D.: A chemical model for natural waters. Aquat. Geochem. 4, 153–199 (1998)

    Article  CAS  Google Scholar 

  8. Byrne, R.H., Miller, W.L.: Copper(II) carbonate complexation in seawater. Geochim. Cosmochim. Acta 49, 1837–1844 (1985)

    Article  CAS  Google Scholar 

  9. Soli, A.L., Byrne, R.H.: Temperature dependence of Cu(II) complexation in natural seawater. Limnol. Oceanogr. 34, 239–244 (1989)

    Article  CAS  Google Scholar 

  10. Fanghänel, Th., Neck, V., Kim, J.I.: The ion product of H2O, dissociation constants of H2CO3 and Pitzer parameters in the system \(\mathrm{Na}^{+}/\mathrm{H}^{+}/\mathrm{OH}^{-}/\mathrm{HCO}_{3}^{-}/\mathrm{CO}_{3}^{2-}/\mathrm{ClO}_{4}^{-}/\mathrm{H}_{2}\mathrm{O}\) at 25 °C. J. Solution Chem. 25, 327–343 (1996)

    Article  Google Scholar 

  11. Powell, K.J., Brown, P.L., Byrne, L.H., Gajda, T., Glenn, H., Staffan, S., Wanner, H.: Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+-Cl, OH, \(\mathrm{CO}_{3}^{2-}\), \(\mathrm{SO}_{4}^{2-}\), and \(\mathrm{PO}_{4}^{3-}\) aqueous systems. Pure Appl. Chem. 77, 739–800 (2005)

    Article  CAS  Google Scholar 

  12. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Sjöberg, S., Wanner, H.: Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+-OH, Cl, \(\mathrm{SO}_{4}^{2-}\), and \(\mathrm{PO}_{4}^{3-}\) systems. Pure Appl. Chem. 79, 895–950 (2007)

    Article  CAS  Google Scholar 

  13. Pitzer, K.S.: Ion interaction approach: theory and data collection. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., vol. I, pp. 75–153. CRC, Boca Raton (1991)

    Google Scholar 

  14. Møller, N.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na–Ca–Cl–SO4–H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988)

    Article  Google Scholar 

  15. Millero, F.J., Huang, F., Graham, T., Pierrot, D.: The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature. Geochim. Cosmochim. Acta 71, 46–55 (2007)

    Article  CAS  Google Scholar 

  16. Königsberger, E., Schmidt, P., Gamsjäger, H.: Solid-solute phase equilibria in aqueous solution. VI. Solubilities, complex formation, and ion-interactions parameters for the system Na+–Mg2+–ClO4–CO2–H2O at 25 °C. J. Solution Chem. 21, 1195–1216 (1992)

    Article  Google Scholar 

  17. Peiper, J.C., Pitzer, K.S.: Thermodynamics of aqueous carbonate solutions including mixtures of sodium carbonate, bicarbonate and chloride. J. Chem. Thermodyn. 14, 613–638 (1982)

    Article  CAS  Google Scholar 

  18. Bruno, J., Stumm, W., Wersin, P., Brandberg, F.: On the influence of carbonate in mineral dissolution. Part I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T=25°C. Geochim. Cosmochim. Acta 56, 1139–1147 (1992)

    Article  CAS  Google Scholar 

  19. Bruno, J., Wersin, P., Stumm, W.: On the influence of carbonate in mineral dissolution. II. The solubility of FeCO3(s) at 25 °C and 1 atm total pressure. Geochim. Cosmochim. Acta 56, 1149–1155 (1992)

    Article  CAS  Google Scholar 

  20. Frydman, M., Nilsson, G., Rengemo, T., Sillen, L.G.: Some solution equilibria involving calcium sulfite and carbonate: III. The acidity constants of H2CO3 and H2 SO3 and CaCO3-CaSO3 equilibria in NaClO4 medium at 25 °C. Acta Chem. Scand. 12, 868–872 (1958)

    Article  Google Scholar 

  21. Riese, N.W., Gamsjäger, H., Schindler, P.W.: Complex formation in the ternary system Mg(II) CO2 H2O. Geochim. Cosmochim. Acta 41, 1193–1200 (1989)

    Article  Google Scholar 

  22. Brucher, E., Glaser, J., Toth, I.: Carbonate exchange for the complex \(\mathrm{UO}_{2}(\mathrm{CO}_{3})_{3}^{4-}\) in aqueous solution as studied by 13C NMR spectroscopy. Inorg. Chem. 30, 2239–2241 (1991)

    Article  CAS  Google Scholar 

  23. Ciavatta, L., Ferri, D., Grenthe, I., Salvatore, F., Spahiu, K.: Studies on metal carbonate equilibria: 3. The lanthanum (III) carbonate complexes in aqueous perchlorate media. Acta Chem. Scand. A 35, 403–413 (1981)

    Article  Google Scholar 

  24. Ferri, D., Grenthe, I., Hietanen, S., Neker-Neumann, E., Salvatore, F.: Studies on metal carbonate equilibria: 12: Zinc II-carbonate complexes in acid solution. Acta Chem. Scand. A 39, 347–353 (1985)

    Article  Google Scholar 

  25. Grenthe, I., Ferri, D., Salvatore, F., Riccio, G.: Studies on metal carbonate equilibria. Part 10. A solubility study of the complex formation in uranium(VI)-water-carbon dioxide(g) system at 25 °C. J. Chem. Soc. Dalton Trans. 11, 2439–2443 (1984)

    Article  Google Scholar 

  26. Harned, H.S., Bonner, F.T.: The first ionization of carbonic acid in aqueous solutions of sodium chloride. J. Am. Chem. Soc. 67, 1026–1031 (1945)

    Article  CAS  Google Scholar 

  27. Harned, H.S., Scholes, S.R.: The ionization constants of \(\mathrm{HCO}_{3}^{-}\) from 0 to 50°C. J. Am. Chem. Soc. 63, 1706–1709 (1941)

    Article  CAS  Google Scholar 

  28. Santana-Casiano, J.M., González-Dávila, M., Millero, F.J.: The examination of the activity coefficients of Cu(II) complexes with OH and Cl in NaClO4 using the Pitzer equations: applicability to other divalent cations. J. Solution Chem. 37, 749–762 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Millero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millero, F.J., Santana-Casiano, J.M. & González-Dávila, M. The Formation of Cu(II) Complexes with Carbonate and Bicarbonate Ions in NaClO4 Solutions. J Solution Chem 39, 543–558 (2010). https://doi.org/10.1007/s10953-010-9523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9523-z

Keywords

Navigation