Skip to main content
Log in

Determination of the Hydrolysis Constants and Solubility Product of Chromium(III) from Reduction of Dichromate Solutions by ICP-OES and UV–Visible Spectroscopy

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The determination of equilibrium constants is difficult when several chemical species are simultaneously present in solution. In this investigation, optical emission spectroscopic determinations of chromium(III) concentration in a 10−4 mol⋅dm−3 solution, prepared from K2Cr2O7 reduced in HNO3 or HCl media, were used to construct the pCr(aq)–pC H diagram. This diagram was used to calculate the pC H borderline of precipitation, to estimate the solubility product \((\log_{10}K_{\mathrm{sp,Cr(OH)}_{3}}^{*})\), and the hydrolysis constants \((\log_{10}\beta_{\mathrm{Cr,H}}^{*},\log_{10}\beta_{\mathrm{Cr,2H}}^{*}\), and \(\log_{10}\beta_{\mathrm{Cr,3H}}^{*})\) of Cr(III). The hydrolysis constants were also calculated using the SQUAD and SUPERQUAD software, along with the average ligand number method. UV-Vis absorption data and associated variables were used in SQUAD, SUPERQUAD, and the average ligand calculations. Results are: 9.00±0.04 for the pC H at the onset of precipitation, 12.40 for \(\log_{10}K_{\mathrm{sp,Cr(OH)}_{3}}^{*}\), −3.52±0.02 for \(\log_{10}\beta_{\mathrm{Cr,H}}^{*}\), −9.30±0.87 for \(\log_{10}\beta_{\mathrm{Cr,2H}}^{*}\) and −17.18±0.16 for \(\log_{10}\beta_{\mathrm{Cr,3H}}^{*}\), respectively. All methods produced essentially the same values for the hydrolysis constants of Cr(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zayed, A., Lytle, C.M., Jin-Hong, Q., Norman, T.: Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206, 293–299 (1998)

    Article  CAS  Google Scholar 

  2. Shan-Li, W., Chung-Chi, C., Yu-Min, T., Chia-Lian, H., Jen-Hshuan, C., Chen-Fang, L.: A mechanism study of light-induced Cr(VI) reduction in an acidic solution. J. Hazard. Mater. 164, 223–228 (2009)

    Article  Google Scholar 

  3. Kotas, J., Stasicka, Z.: Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 107, 263–283 (2000)

    Article  CAS  Google Scholar 

  4. Rai, D., Sass, B.M., Moore, D.A.: Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 26, 345–349 (1987)

    Article  CAS  Google Scholar 

  5. Pezzin, S.H., Rivera, J.F.L., Collins, C.H., Collins, K.E.J.: Reduction of trace quantities of chromium(VI) by strong acids. Braz. Chem. Soc. 15, 58–65 (2004)

    CAS  Google Scholar 

  6. Ringbom, A.: Complexation in Analytical Chemistry. Wiley, New York (1963)

    Google Scholar 

  7. Baes, Jr., C.F., Mesmer, R.E.: The Hydrolysis of Cations. Wiley, New York (1977)

    Google Scholar 

  8. Ramírez-García, J.J., Jiménez-Reyes, M., Solache-Ríos, M., Fernández-Ramírez, E., López-González, H., Rojas-Hernández, A.: Solubility and first hydrolysis constants of europium at different ionic strength and 303 K. J. Radioanal. Nucl. Chem. 257, 299–303 (2003)

    Article  Google Scholar 

  9. Ramírez-García, J.J., Solache-Ríos, M., Jiménez-Reyes, M., Rojas-Hernández, A.: Solubility and hydrolysis of La, Pr, Eu, Er, and Lu in 1 M NaCl ionic strength at 303 K. J. Solution Chem. 32, 879–896 (2003)

    Article  Google Scholar 

  10. López-González, H., Solache-Ríos, M., Jiménez-Reyes, M., Ramírez-García, J., Rojas- Hernández, A.: Effect of chloride ions on the hydrolysis of trivalent lanthanum, praseodymium, and lutetium in aqueous solutions of 2 M ionic strength. J. Solution Chem. 34, 427–441 (2005)

    Article  Google Scholar 

  11. Jiménez-Reyes, M., Solache-Ríos, M., Rojas-Hernández, A.: Applications of the specific ion interaction theory to the solubility product and first hydrolysis constants of europium. J. Solution Chem. 35, 201–214 (2006)

    Article  Google Scholar 

  12. López-González, H., Solache-Ríos, M., Jiménez-Reyes, M., Rojas-Hernández, A.: Solubility and hydrolysis of lutetium at different [Lu3+]initial. J. Radioanal. Nucl. Chem. 274, 103–108 (2007)

    Article  Google Scholar 

  13. Ohata, M., Takaku, Y., Inagaki, K., Hioki, A., Chiba, K.: Improvement of analytical sensitivity by Ar-N2 inductively coupled plasma in axially viewing optical emission spectrometry. Anal. Sci. 25, 161–163 (2009)

    Article  CAS  Google Scholar 

  14. Careri, M., Elviri, L., Mangia, A.: Element-tagged immunoassay with inductively coupled plasma mass spectrometry for multianalyte detection. Anal. Bioanal. Chem. 393, 57–61 (2009)

    Article  CAS  Google Scholar 

  15. Legget, D.J., McBryde, W.A.E.: General computer program for the computation of stability constants from absorbance data. Anal. Chem. 47, 1065–1070 (1975)

    Article  Google Scholar 

  16. Gans, P., Sabatini, A., Vacca, A.: SUPERQUAD: An improved general program for computation of formation constants from potentiometric data. J. Chem. Soc. Dalton Trans. 1195–1200 (1985)

  17. Pinsuwan, S., Alvarez-Núñez, F.A., Tabibi, S.S., Yalkowsky, S.H.: Spectrophotometric determination of acidity constants of 4-dimethylamino sancycline (col-3), a new antitumor drug. J. Pharm. Sci. 88, 535–537 (1999)

    Article  CAS  Google Scholar 

  18. Barrera-Diaz, C., Palomar-Pardave, M., Romero-Romo, M., Martinez, S.: Chemical and electrochemical consideration on the removal process of hexavalent chromium from aqueous media. J. Appl. Electrochem. 33, 61–71 (2003)

    Article  CAS  Google Scholar 

  19. Philipot, J.M., Chaffange, F., Sibony, J.: Hexavalent chromium removal from drinking water. Water Sci. Technol. 17, 1121–1132 (1984)

    Google Scholar 

  20. Palmer, C.D., Windhausen, P.R.: Processes affecting the remediation of chromium-contaminated sites. Environ. Health Perspect. 92, 25–40 (1991)

    Article  CAS  Google Scholar 

  21. Kumral, E.: Speciation of chromium in waters via sol-gel preconcentration prior to atomic spectrometric determination. Thesis of Master in Science, Engineering and Science of Izmir Institute of Technology, Izmir, Turkey (2007)

  22. Fahim, N.F., Barsoum, B.N., Eid, A.E., Khalil, M.S.: Removal of chromium (III) from tannery wastewater using activated carbon from sugar industrial waste. J. Hazard. Mater. B 136, 303–309 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gardea-Torresdey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Gonzalez, H., Peralta-Videa, J.R., Romero-Guzman, E.T. et al. Determination of the Hydrolysis Constants and Solubility Product of Chromium(III) from Reduction of Dichromate Solutions by ICP-OES and UV–Visible Spectroscopy. J Solution Chem 39, 522–532 (2010). https://doi.org/10.1007/s10953-010-9522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9522-0

Keywords

Navigation