Skip to main content
Log in

Measurement of the Diffusivity of Cesium Ion in Aqueous Rubidium Chloride Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

For the first time cesium diffusivity in aqueous solutions of rubidium chloride is being reported here in the concentration range from 0.001 to 4.00 mol⋅dm−3. The measurement use a radioactive tracer technique employing a sliding cell mechanism. These diffusivity values were utilized to understand the transport mechanism of Cs ion in the RbCl–H2O system using the Onsager-Gosting-Harned equation and the extended Debye-Hückel equation. The observed deviation between the theoretical and experimental diffusivities are explained by introducing the concept of Field-Dielectric-Gradient forces and energies that exist around an ion, which takes care of the finite size of the ion, ion-water interaction and the ion-ion interaction in a continuum basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kropman, M.K., Bakkar, H.J.: Dynamics of water molecules in aqueous solvation shells. Science 291, 2118–2120 (2001)

    Article  CAS  Google Scholar 

  2. Chandra, A.: Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions. Phys. Rev. Lett. 85, 768–771 (2000)

    Article  CAS  Google Scholar 

  3. Barthel, J.M.G., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions. Springer, New York (1998)

    Google Scholar 

  4. Hubbard, J.B., Wolynes, P.G.: In: Dogonadze, R.R., et al. (eds.) Chemical Physics of Solvation Part D. Elsevier, Amsterdam (1988)

    Google Scholar 

  5. Roux, B., Karplus, M.: Molecular dynamics simulations of the gramicidin channel. Ann. Rev. Biophys. Biomol. Struct. 23, 732–753 (1994)

    Google Scholar 

  6. Chakrabarti, H.: Cation diffusion coefficients in CsCl–H2O system over the concentration range 0.009 to 10.00 mol⋅dm−3 at 25 °C. Appl. Radiat. Isot. 45, 171–175 (1994)

    Article  CAS  Google Scholar 

  7. Rusli, I.T., Schrader, G.L., Larson, M.A.: Raman spectroscopic study of NaNO3 solution system–solute clustering in supersaturated solution. J. Cryst. Growth 97, 345–351 (1989)

    Article  CAS  Google Scholar 

  8. Georgalis, Y., Kierzek, A.M., Saenger, W.: Cluster formation in aqueous electrolyte solutions observed by dynamic light scattering. J. Phys. Chem. B 104, 3405–3406 (2000)

    Article  CAS  Google Scholar 

  9. Ruanhui, L., Leaist, D.G.: Mutual diffusion in solutions of alkali metal halides–aqueous LiF, NaF and KF at 25 °C. J. Chem. Soc. Faraday Trans. 94, 111–114 (1998)

    Article  Google Scholar 

  10. Rajurkar, N.S., Patil, D.D.: Electrolyte diffusion of cesium bromide in water at 25 °C. Appl. Radiat. Isot. 55, 289–292 (2001)

    Article  CAS  Google Scholar 

  11. Rajurkar, N.S., Gokarn, N.A.: Studies on self and electrolyte diffusion in cesium halides. Appl. Radiat. Isot. 58, 441–445 (2003)

    Article  CAS  Google Scholar 

  12. Dufreche, J.F., Bernard, O., Turq, P.: Transport of electrolyte solutions: are ions Brownian particles? J. Mol. Liq. 118, 189–194 (2005)

    Article  CAS  Google Scholar 

  13. Behzadi, B., Patel, B.H., Galindo, A., Ghotbi, C.: Modeling electrolyte solutions with the SAFT–VR equation using Yukawa potentials and the mean–spherical approximation. Fluid Phase Equilib. 236, 241–255 (2005)

    Article  CAS  Google Scholar 

  14. Goa, G.-H., Shi, H.-B., Yu, Y.-X.: Mutual diffusion coefficients of concentrated 1:1 electrolyte from the modified meas spherical approximation. Fluid Phase Equilib. 256, 105–111 (2007)

    Article  Google Scholar 

  15. Haghtalab, A., Mazloumi, S.H.: A square-well equation of state for aqueous strong electrolyte solutions. Fluid Phase Equilib. 285, 96–104 (2009)

    Article  CAS  Google Scholar 

  16. Hasan, S.A.: Morphology of ion clusters in aqueous electrolytes. Phys. Rev. E 77, 031501 (2008)

    Article  Google Scholar 

  17. Mills, R., Woolf, L.A.: Tracer–diffusion coefficients of cesium ion in aqueous alkali chloride solutions at 25 °C. J. Phys. Chem. 63, 2068–2069 (1959)

    Article  CAS  Google Scholar 

  18. Stell, G., Patey, G.N., Hoye, J.S.: Dieletric constants of fluid models: statistical mechanical theory and its quantitative implementation. Adv. Chem. Phys. 48, 183–328 (1981)

    Article  CAS  Google Scholar 

  19. Ramanathan, P.S., Friedman, H.L.: Study of a refined model for aqueous 1–1 electrolytes. J. Chem. Phys. 54, 1086–1099 (1971)

    Article  CAS  Google Scholar 

  20. Friedman, H.L.: Ionic Solution Theory. Interscience, New York (1963)

    Google Scholar 

  21. Duferche, J.F., Bernard, O., Turq, P., Mukherjee, A., Bagchi, B.: Ionic self diffusion in concentrated aqueous electrolyte solutions. Phys. Rev. Lett. 88, 095902 (2002)

    Article  Google Scholar 

  22. Friedman, A.M., Kennedy, J.W.: The self-diffusion coefficients of potassium, cesium, iodide and chloride ions in aqueous solutions. J. Am. Chem. Soc. 77, 4499–4501 (1955)

    Article  CAS  Google Scholar 

  23. Chakrabarti, H., Changdar, S.N.: Accurate measurement of tracer diffusion coefficient in aqueous solutions with sliding cell technique. Appl. Radiat. Isot. 43, 405–417 (1992)

    Article  CAS  Google Scholar 

  24. Chakrabarti, H.: Strong evidence of isotope effect in diffusion of NaCl and CsCl solution. Phys. Rev. B 51, 12809–12812 (1995)

    Article  CAS  Google Scholar 

  25. Chakrabarti, H.: Anomalies in the ion transport of phosphoric acid in water and heavy water environments. J. Phys. Cond. Matt. 8, 7019–7029 (1996)

    Article  CAS  Google Scholar 

  26. Gosting, L.J., Harned, H.S.: The application of Onsager theory of ionic mobilities to self-diffusion. J. Am. Chem. Soc. 73, 159–161 (1951)

    Article  CAS  Google Scholar 

  27. Onsager, L., Fuoss, R.M.: Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes. J. Phys. Chem. 36, 2689–2778 (1930)

    Article  Google Scholar 

  28. Stokes, R.H., Woolf, L.A., Mills, R.A.: Tracer diffusion of iodide ion in aqueous alkali chloride solutions at 25 °C. J. Am. Chem. Soc. 61, 1634–1636 (1957)

    CAS  Google Scholar 

  29. Bahe, L.W.: Structure in concentrated solutions. Field–dielectric–gradient forces and energies. J. Phys. Chem. 76, 1062–1071 (1972)

    Article  CAS  Google Scholar 

  30. Ritson, D.M., Hasted, J.B.: Dielectric properties of aqueous ionic solutions. Parts I & II. J. Chem. Phys. 16, 1–21 (1948)

    Article  Google Scholar 

  31. Padova, J.: Ion–solvent interaction. II. Partial molar volume and electrostriction: a thermodynamic approach. J. Chem. Phys. 39, 1552–1557 (1963)

    Article  CAS  Google Scholar 

  32. Hyman, A., Vaughn, P.A.: Small angle scattering by solutions of complex ions. In: Proceeding of the Conference on “Small Angle Scattering” held at Syracuse Univ., June 1965, Gordon and Breach New York, N. Y., 1967, p. 477

  33. Mills, R., Lobo, V.M.M.: Physical Sciences Data 36: Self Diffusion in Electrolyte Solutions. Elsevier, Amsterdam (1989)

    Google Scholar 

  34. Chakrabarti, H., Sil, S., Kundu, S.: (to be published)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haimanti Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, H., Kanjilal, B. Measurement of the Diffusivity of Cesium Ion in Aqueous Rubidium Chloride Solution. J Solution Chem 39, 409–416 (2010). https://doi.org/10.1007/s10953-010-9508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9508-y

Keywords

Navigation