Skip to main content
Log in

Ideal Behavior of Water Solutions of Strong Electrolytes and Non-electrolytes at High Concentrations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Contrary to widely held beliefs, many concentrated aqueous solutions of strong electrolytes and nonelectrolytes are shown to behave ideally by calculating the activity of water (a w) from vapor pressure data. The mole fraction of water (x w) is equal to the water activity a w(Raoult’s Law) when the mole fraction of water is calculated by accounting for water strongly bound to the solute, which is then not available to act as solvent. In this case x w=(55.51−mH T)/(55.51−mH T+im), where m is the molality of the solute particles, i is the stoichiometric number of solute particles produced per mole of dissolved solute, and H T is the thermodynamic hydration number H T. Published reservations about previous work of this type are addressed. The values of H T vary little over wide ranges of concentration and correlate with the Hofmeister series, the B coefficient of the Jones-Dole viscosity equation, and other properties of water. Activity coefficients of the bulk or “free” water remain at unity even at high concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blandamer, M.J., Engberts, J.B.F.N., Gleeson, P.T., Reis, J.C.R.: Activity of water in aqueous systems; a frequently neglected property. Chem. Soc. Rev. 34, 440–458 (2005)

    Article  CAS  Google Scholar 

  2. Zavitsas, A.A.: Properties of water solutions of electrolytes and nonelectrolytes. J. Phys. Chem. B 105, 7805–7817 (2001)

    Article  CAS  Google Scholar 

  3. Bockris, J.O.M., Reddy, A.: Modern Electrochemistry, 2nd edn., p. 293 and ff. Plenum Press, New York (1998)

    Google Scholar 

  4. Lewis, G.N.: The activity of the ions and the degree of dissociation of strong electrolytes. J. Am. Chem. Soc. 34, 1631–1644 (1912)

    Article  Google Scholar 

  5. Scatchard, G., Hamer, W.J., Wood, S.E.: Isotonic solutions I. The chemical potential of water in aqueous solutions of sodium chloride, potassium chloride, sulfuric acid, sucrose, urea and glycerol at 25 °C. J. Am. Chem. Soc. 60, 3061–3070 (1938)

    Article  CAS  Google Scholar 

  6. Stokes, R.H., Robinson, R.A.: Interactions of aqueous nonelectrolyte solutions I. Solute–solvent equilibria. J. Phys. Chem. 70, 2126–2131 (1966)

    Article  CAS  Google Scholar 

  7. Washburn, E.W. (ed.): International Critical Tables of Numeric Data, Physics, Chemistry and Technology, vol. 3, pp. 292–300, 351–373. McGraw-Hill, New York (1928)

    Google Scholar 

  8. Levine, I.N.: Physical Chemistry, 6th edn., p. 313. McGraw-Hill, New York (2009)

    Google Scholar 

  9. Glasstone, S.: The Elements of Physical Chemistry, p. 418. D. Van Nostrand, Princeton (1946)

    Google Scholar 

  10. Einstein, A.: Eine neue Bestimmung der Molecül-dimensionen. Ann. Physik. 19, 289–301 (1906)

    Article  CAS  Google Scholar 

  11. Einstein, A.: Berichtigung zu meiner Arbeit: “Eine neue Bestimmung der Molecül-dimensionen. Ann. Physik. 34, 591–592 (1911)

    Article  CAS  Google Scholar 

  12. Berkeley, Earl of, Hartley, E.G.J.: Further determinations of direct osmotic pressures. Proc. R. Soc. Lond. A 92, 477–492 (1916)

    Article  Google Scholar 

  13. Berkeley, Earl of, Hartley, E.G.J., Burton, C.V.: On osmotic pressures derived from vapour-pressure measurements: aqueous solutions of cane sugar and methyl glucoside. Phil. Trans. R. Soc. Lond. A 218, 295–349 (1919)

    Article  Google Scholar 

  14. Scatchard, G.: The hydration of sucrose in water solution as calculated from vapor-pressure measurements. J. Am. Chem. Soc. 43, 2406–2418 (1921)

    Article  CAS  Google Scholar 

  15. Stokes, R.H., Robinson, R.A.: Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70, 1948 (1870–1878)

    Google Scholar 

  16. Ohtaki, H., Radnai, T.: Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157–1204 (1993)

    Article  CAS  Google Scholar 

  17. Arshadi, M., Yamdagni, R., Kebarle, P.: Hydration of the halide negative ions in the gas phase II. Comparison of hydration energies for the alkali positive and halide negative ions. J. Phys. Chem. 74, 1475–1482 (1970)

    Article  CAS  Google Scholar 

  18. Xantheas, S.S.: Quantitative description of hydrogen bonding in chloride–water clusters. J. Phys. Chem. 100, 9703–9713 (1996)

    Article  CAS  Google Scholar 

  19. Ayala, R., Martínez, J.M., Pappalardo, R.R., Sánchez, Marcos: E.: Theoretical study of the microsolvation of the bromide ion in water, methanol, and acetonitrile: ion–solvent vs solvent–solvent interactions. J. Phys. Chem. A 104, 2799–2807 (2000)

    CAS  Google Scholar 

  20. Impey, R.W., Madden, P.A., McDonald, I.R.: Hydration and mobility of ions in solution. J. Phys. Chem. 87, 5071–5083 (1983)

    Article  CAS  Google Scholar 

  21. Du, H., Rasaiah, J.C., Miller, J.D.: Structural and dynamic properties of concentrated alkali halide solutions: a molecular dynamics simulation study. J. Phys. Chem. B 111, 209–217 (2007)

    Article  CAS  Google Scholar 

  22. Tongraad, A., Rode, B.M.: The hydration structures of F and Cl investigated by ab initio QM/MM molecular dynamics simulations. Phys. Chem. Chem. Phys. 5, 357–362 (2003)

    Article  CAS  Google Scholar 

  23. Buchner, R., Hefter, G.T., May, P.M.: Dielectric relaxation of aqueous NaCl solutions. J. Phys. Chem. A 103, 1–9 (1999)

    Article  CAS  Google Scholar 

  24. Zavitsas, A.A.: Aqueous solutions of calcium ions: hydration numbers and the effect of temperature. J. Phys. Chem. B 109, 20636–20640 (2005)

    Article  CAS  Google Scholar 

  25. Lindqvist-Reis, P., Klenze, R., Schubert, G., Fanghänel, T.: Hydration of Cm3+ in aqueous solution from 20 to 200 °C. A time-resolved laser fluorescence spectroscopy study. J. Phys. Chem. B 109, 3077–3083 (2005)

    Article  CAS  Google Scholar 

  26. Mason, C.M.: The activity and osmotic coefficients of trivalent metal chlorides in aqueous solution from vapor pressure measurements at 25 °C. J. Am. Chem. Soc. 60, 1638–1647 (1938)

    Article  CAS  Google Scholar 

  27. Hamer, W.J., Wu, Y.-C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1099 (1972)

    Article  CAS  Google Scholar 

  28. Goldberg, R.N., Nuttall, R.L.: Evaluated activity and osmotic coefficients for aqueous solutions: the alkaline earth metal halides. J. Phys. Chem. Ref. Data 7, 263–310 (1978)

    CAS  Google Scholar 

  29. Robinson, R.A., Stokes, R.H.: Activity coefficients in aqueous solutions of sucrose, mannitol and their mixtures at 25 °C. J. Phys. Chem. 65, 1954–1958 (1961). The osmotic coefficients of the sucrose solutions are obtained as specified therein: φ=1+0.07028m+0.01847m 2−0.00405m 3+0.000228m 4;φ is converted to p/p 0 as described in the Introduction

    Article  CAS  Google Scholar 

  30. Hofmeister, F.: Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. (Leipzig) 24, 247–260 (1888)

    Article  Google Scholar 

  31. Lonetti, B., Lo Nostro, P., Ninham, B., Baglioni, P.: Anion effects on calixarene monolayers: a Hofmeister series study. Langmuir 21, 2242–2249 (2005)

    Article  CAS  Google Scholar 

  32. Kunz, W., Lo Nostro, P., Ninham, B.W.: The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 9, 1–18 (2004)

    Article  CAS  Google Scholar 

  33. Bowron, D.T., Finney, J.L.: Structure of a salt–amphiphile–water solution and the mechanism of salting out. J. Chem. Phys. 118, 8357–8372 (2003)

    Article  CAS  Google Scholar 

  34. Finney, J.L., Bowron, D.T.: Experimental configurational landscapes in aqueous solutions. Phil. Trans. R. Soc. A 363, 469–492 (2005)

    Article  CAS  Google Scholar 

  35. Broering, J.M., Bommarius, A.S.: Evaluation of Hofmeister effects on the kinetic stability of proteins. J. Phys. Chem. B 109, 20612–20619 (2005)

    Article  CAS  Google Scholar 

  36. Chaplin, M.: Provides a good description of Hofmeister effects at http://www.lsbu.ac.uk/water/hofmeist.html (2009)

  37. Lo Nostro, P., Ninham, B.W., Lo Nostro, A., Pesavento, G., Fratoni, L., Baglioni, P.: Specific ion effects on the growth rates of Staphylococcus aureus and Pseudomonas aeruginosa. Phys. Biol. 2, 1–7 (2005)

    Article  CAS  Google Scholar 

  38. Sedlák, E., Stagg, L., Wittung-Stafshede, P.: Role of cations in stability of acidic protein Desulfovibrio desulfuricans apoflavotoxin. Arch. Biochem. Biophys. 474, 128–135 (2008)

    Article  CAS  Google Scholar 

  39. Trachman, J.D., Yasmin, M.: Thermo-osmoregulation of heat-labile enderotoxin expression by Escherichia coli. Curr. Microbiol. 49, 353–360 (2004)

    Article  CAS  Google Scholar 

  40. Kiriukin, M.Y., Collins, K.D.: Dynamic hydration numbers for biologically important ions. Biophys. Chem. 99, 155–168 (2002)

    Article  Google Scholar 

  41. De Cristofaro, R., Peyvandi, F., Palla, R., Lavoretano, S., Lombardi, R., Merati, G., Romitelli, F., Di Stasio, E., Mannuccio Mannucci, P.: Role of chloride ions in modulation of the interaction between von Willebrand factor and ADAMTS-13. J. Biol. Chem. 280, 23295–23302 (2005)

    Article  CAS  Google Scholar 

  42. Munishkina, L.A., Henriques, J., Uversky, V.N., Fink, A.L.: Role of protein–water interactions and electrostatics in α-Synuclein fibril formation. Biochem. 43, 3289–3300 (2004)

    Article  CAS  Google Scholar 

  43. Corey, H.E.: Stewart and beyond: New models of acid-base balance. Kidney Int. 64, 777–787 (2003)

    Article  CAS  Google Scholar 

  44. Grover, P.K., Ryall, R.L.: Critical appraisal of salting-out and its implications for chemical and biological sciences. Chem. Rev. 105, 1–10 (2005)

    Article  CAS  Google Scholar 

  45. Zangi, R., Engberts, J.F.N.: Physisorption of hydroxide ions from aqueous solution to a hydrophobic substance. J. Am. Chem. Soc. 127, 2272–2276 (2005)

    Article  CAS  Google Scholar 

  46. Vácha, R., Zangi, R., Engberts, J.B.F.N., Jungwirth, P.: Water structuring and hydroxide ion binding at the interface between water and hydrophobic walls of varying rigidity and van der Waals interactions. J. Phys. Chem. B 112, 7689–7692 (2008)

    Google Scholar 

  47. Zangi, R., Hagen, M., Berne, B.J.: Effect of ions on the hydrophobic interaction between two plates. J. Am. Chem. Soc. 129, 4678–4686 (2007)

    Article  CAS  Google Scholar 

  48. Zangi, R., Berne, B.J.: Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions. J. Phys. Chem. B 110, 22736–22741 (2006)

    Article  CAS  Google Scholar 

  49. Jenkins, H.B., Marcus, Y.: Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995)

    Article  CAS  Google Scholar 

  50. Marcus, Y.: Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370 (2009)

    Article  CAS  Google Scholar 

  51. Azam, S.S., Hofer, T.S., Bahttacharjee, A., Lim, L.H.V., Pribil, A.B., Randolf, B.R., Rode, B.M.: Beryllium(II): the strongest structure-forming ion in water? A QMCF MD simulation study. J. Phys. Chem. B 113, 9289–9295 (2009)

    Article  CAS  Google Scholar 

  52. Omta, A.W., Kropman, M.F., Woutersen, S., Bakker, H.J.: Influence of ions on the hydrogen-bond structure in liquid water. J. Chem. Phys. 119, 12457–12461 (2003)

    Article  CAS  Google Scholar 

  53. Näslund, L.-Ǻ., Edwards, D.C., Wernet, P., Bergmann, U., Ogasawara, H., Pettersson, L.G.M., Myneni, S., Nilsson, A.: X-ray absorption spectroscopy study of the hydrogen bond network in the bulk water of aqueous solutions. J. Phys. Chem. A 109, 5995–6002 (2005)

    Google Scholar 

  54. Smith, J.D., Saykally, R.J., Geissler, P.L.: The effects of dissolved halide ions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129, 13847–13856 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Zavitsas.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 148kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavitsas, A.A. Ideal Behavior of Water Solutions of Strong Electrolytes and Non-electrolytes at High Concentrations. J Solution Chem 39, 301–317 (2010). https://doi.org/10.1007/s10953-010-9503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9503-3

Keywords

Navigation