Skip to main content
Log in

Competitive Self and Induced Aggregation of Calix[4]arene Ethers and Their Interaction with Pinacyanol Chloride and Methylene Blue in Nonaqueous Media

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Long chain calix[4]arene ethers have been examined for aggregation in nonaqueous solvents by using UV-vis molecular absorbance spectroscopy. It has been observed that tetraalkylated (alkyl = hexadecyl and octadecyl, respectively) calix[4]arene ethers tend to aggregate in chloroform and tetrahydrofuran, possibly via ππ stacking interactions of the phenyl moieties, and the aggregation process appears to be facilitated by the alkyl chains. The analogous dialkylated compounds do not show any self-aggregation, plausibly due to strong hydrogen bonding between the –OH and the –O– of calix aryl ether which seems to disrupt the aggregation process. Addition of the anionic surfactant sodium dodecylsulfate (SDS) appears to hinder the aggregation process in nonpolar chloroform but the same surfactant facilitates aggregation in the polar tetrahydrofuran. The cationic surfactant (cetyltrimethyl ammonium bromide) and the nonionic surfactant (Brij-35) have no effect on this aggregation process. Unexpectedly, SDS induces aggregation of dialkylated calix[4]arene ethers in chloroform. It has been observed that the aggregated form of the tetraalkylated calix[4]arene ethers tend to increase the dimerization efficiency of cationic dyes (pinacyanol chloride and methylene blue) in chloroform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, O.M., Mecozzi, S.: Synthesis and pH-dependent self-assembly of semifluorinated calix[4]arenes. Tetrahedron 63, 5539–5547 (2007)

    Article  CAS  Google Scholar 

  2. Shivanyuk, A., Saadioui, M., Broda, F., Thondorf, I., Vysotsky, M.O., Rissanen, K., Kolehmainen, E., Böhmer, V.: Sterically and guest controlled self-assembly of calix[4]arene derivatives. Chem. Eur. J. 10, 2138–2148 (2004)

    Article  CAS  Google Scholar 

  3. Kotz, J., Kosmella, S., Beitz, T.: Self-assembled polyelectrolyte systems. Prog. Polym. Sci. 26, 1199–1232 (2001)

    Article  CAS  Google Scholar 

  4. Forster, S., Plantenberg, T.: From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem., Int. Ed. Engl. 41, 688–714 (2002)

    Article  CAS  Google Scholar 

  5. Hunter, R.J.: Foundations of Colloid Science, vol. 1. Clarendon Press, Oxford (1987)

    Google Scholar 

  6. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, Orlando (1985)

    Google Scholar 

  7. Rosen, M.J.: Surfactants and Interfacial Phenomena, 2nd edn. Wiley, New York (1989)

    Google Scholar 

  8. Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd edn. Kriger, Malabar (1991)

    Google Scholar 

  9. Myers, D.: Surfactant Science and Technology, 2nd edn. VCH, New York (1992)

    Google Scholar 

  10. Evans, D.F., Wennerström, H.: The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, 2nd edn. Wiley-VCH, Weinheim (1999)

    Google Scholar 

  11. Gutsche, C.D.: In: Stoddart, J.F. (ed.) Calixarenes: Monographs in Supramolecular Chemistry. Royal Society of Chemistry, London (1989)

    Google Scholar 

  12. Gutsche, C.D.: Calixarenes: An Introduction, 2nd edn. Royal Society of Chemistry, Cambridge (2008)

    Google Scholar 

  13. Chawla, H.M., Srinivas, K.: Molecular diagnostics: synthesis of new chromogenic calix[8]arenes as potential reagents for detection of amines. J. Chem. Soc., Chem. Commun. 2593–2594 (1994)

  14. Kubo, Y., Maruyama, S., Ohhara, N., Nakamura, M., Tokita, S.S.: Molecular recognition of butylamines by a binaphtyl-derived chromogenic calix[4]crown. J. Chem. Soc., Chem. Commun. 1727–1728 (1995)

  15. Chawla, H.M., Srinivas, K.: Synthesis of new chromogenic calix[4]arenes bridged at the upper rim through bisazophenyl linkages. J. Org. Chem. 61, 8464–8467 (1996)

    Article  CAS  Google Scholar 

  16. Pandey, S., Ali, M., Bishnoi, A., Azam, A., Pandey, S., Chawla, H.M.: Quenching of pyrene fluorescence by calix[4]arene and calix[4]resorcinarenes. J. Fluoresc. 18, 533–539 (2008)

    Article  CAS  Google Scholar 

  17. Pandey, S., Azam, A., Pandey, S., Chawla, H.M.: Novel dansyl-appended calix[4]arene frameworks: fluorescence properties and mercury sensing. Org. Biomol. Chem. 7, 269–279 (2009)

    Article  CAS  Google Scholar 

  18. Venkatesan, N.: Studies on calix[n]arenes based molecular receptors. Ph.D. Thesis, IIT, New Delhi (2000)

  19. Diamond, D., Mckervey, M.A.: Calix[4]arene-based sensing agents. Chem. Soc. Rev. 25, 15–24 (1996)

    Article  CAS  Google Scholar 

  20. Duncan, D.M., Cockayne, J.S.: Application of calixarene ionophores in PVC based ISEs for uranium detection. Sens. Actuators B 73, 228–235 (2001)

    Article  Google Scholar 

  21. Li, D., Yang, X., McBranch, D.: Molecular architecture of calixarenes and their self-assembled mono- and multi-layers for nonlinear optical (NLO) applications. Synth. Met. 86, 1949–1950 (1997)

    Article  Google Scholar 

  22. Arimori, S., Nagasaki, T., Shinkai, S.: Tailor-making of desired assemblies from well-designed monomers: use of calix[4]arene conformers as building blocks. J. Chem. Soc. Perkin Trans. 1, 887–889 (1993)

    Google Scholar 

  23. Arimori, S., Nagasaki, T., Shinkai, S.: Self-assembly of tetracationic amphiphiles bearing a calix[4]arene core. Correlation between the core structure and the aggregation properties. J. Chem. Soc. Perkin Trans. 2, 679–683 (1995)

    Google Scholar 

  24. Ikeda, A., Shinkai, S.: Metal-induced aggregation-deaggregation equilibrium change in calix[4]arene-appended bisfullerenes. Chem. Lett. 803–804 (1996)

  25. Lee, M., Lee, S.J., Jiang, L.H.: Stimuli responsible supramolecular nanocapsules from amphiphilic calixarene assembly. J. Am. Chem. Soc. 126, 12724–12725 (2004)

    Article  CAS  Google Scholar 

  26. Omar, O., Ray, A.K., Hassan, A.K.: Resorcinol calixarenes (resorcinarenes): Langmuir-Blodgett films and optical properties. Supramol. Sci. 4, 417–421 (1997)

    Article  CAS  Google Scholar 

  27. Markowitz, M.A., Janout, V., Castner, D.G., Regen, S.L.: Perforated monolayers: design and synthesis of porous and cohesive monolayers from mercurated calix[n]arenes. J. Am. Chem. Soc. 111, 8192–8200 (1989)

    Article  CAS  Google Scholar 

  28. Tani, T.: In: Kobayashi, T. (ed.) J-Aggregates. World Scientific, Singapore (1996)

    Google Scholar 

  29. West, W., Pearce, S.: The dimeric state of cyanine dyes. J. Phys. Chem. 69, 1894–1903 (1965)

    Article  CAS  Google Scholar 

  30. Patil, K., Pawar, R., Talap, P.: Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea. Phys. Chem. Chem. Phys. 2, 4313–4317 (2002)

    Article  Google Scholar 

  31. Bauer, L.J., Gutsche, C.D.: Calixarenes. 15. The formation of complexes of calixarenes with neutral organic molecules in solution. J. Am. Chem. Soc. 107, 6063–6069 (1985)

    Article  CAS  Google Scholar 

  32. Munch, J.H., Gutsche, C.D.: p-tert-butylcalix[8]arene [preparation]. Org. Synth. 68, 234–237 (1990)

    Google Scholar 

  33. Gutsche, C.D., Iqbal, M., Steward, D.: Calixarenes. 19. Syntheses procedures for p-tert-butylcalix[4]arene. J. Org. Chem. 51, 742–745 (1986)

    Article  CAS  Google Scholar 

  34. Creaven, B.S., Deasy, M., Gallagher, J.F., Mcginley, J., Murry, B.A.: Unusual cone conformation retention in calix[4]arenes. Tetrahedron 57, 8883–8887 (2001)

    Article  CAS  Google Scholar 

  35. Verboom, W., Durie, A., Egberink, R.J.M., Asfari, Z., Reinhoudt, D.N.: Ipso nitration of p-tert-butylcalix[4]arenes. J. Org. Chem. 57, 1313–1316 (1992)

    Article  CAS  Google Scholar 

  36. Clark, T.E., Makha, M., Raston, C.L., Sobolev, A.L.: Supersized bilayers based on an o-alkyl substituted calix[4]arene. Cryst. Eng. Commun. 8, 707–711 (2006)

    CAS  Google Scholar 

  37. Arora, V.: Studies directed towards development of new molecular diagnostics. Ph.D. Thesis, IIT, New Delhi (2004)

  38. Jaime, C., Mendoza, J.D., Prados, P., Nieto, P.M., Sanchez, C.: 13C NMR chemical shifts. A single rule to determine the conformation of calix[4]arenes. J. Org. Chem. 56, 3372–3376 (1991)

    Article  CAS  Google Scholar 

  39. Mukherjee, P., Gumkowski, M.J., Chan, C.C., Sharma, R.: Determination of critical micellization concentrations of perfluorocarboxylates using ultraviolet spectroscopy: some unusual counterion effects. J. Phys. Chem. 94, 8832–8835 (1990)

    Article  Google Scholar 

  40. Saha, A., Nayak, S.K., Chottopadhaya, S., Mukherjee, A.K.: Evidence of reverse micellization of a calix[4]arene through a study of its charge transfer and host-guest complexation with [60]fullerene. J. Phys. Chem. B 108, 7688–7693 (2004)

    Article  CAS  Google Scholar 

  41. Sabaté, R., Gallardo, M., Estelrich, J.: Location of pinacyanol in micellar solutions of N-alkyl trimethylammonium bromide surfactants. J. Colloid Interface Sci. 233, 205–210 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, S., Kar, J.R., Azam, A. et al. Competitive Self and Induced Aggregation of Calix[4]arene Ethers and Their Interaction with Pinacyanol Chloride and Methylene Blue in Nonaqueous Media. J Solution Chem 39, 107–120 (2010). https://doi.org/10.1007/s10953-009-9489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9489-x

Navigation