Abstract
The molar conductivities (Λ) of solutions of bis(2,2′-bipyridine)bis(thiocyanate)chromium(III) triiodide [CrIII(bipy)2(SCN)2]I3 (where bipy denotes 2,2′-bipyridine, C10H8N2), [ \(\mathrm{A}^{+}\mathrm{I}_{3}^{-}\) ], were measured in acetonitrile (ACN) at the temperatures 294.15, 299.15, and 305.15 K. In addition, cyclic voltammograms (CVs) of [ \(\mathrm{A}^{+}\mathrm{I}_{3}^{-}\) ] were recorded on platinum, gold, and glassy carbon working electrodes in ACN, using n-tetrabutylammonium hexafluorophosphate (NBu4PF6) as the supporting electrolyte, at scan rates (v) ranging from 0.05 to 0.12 V⋅s−1. Furthermore, electrochemical impedance spectroscopic (EIS) measurements were carried out in the frequency range 50 Hz<f<50 kHz using these three working electrodes. The measured molar conductivities (Λ) demonstrate that [ \(\mathrm{A}^{+}\mathrm{I}_{3}^{-}\) ] behaves as uni-univalent electrolyte in ACN over the investigated temperature range. The Λ values were analyzed by means of the Lee-Wheaton conductivity equation in order to estimate the limiting molar conductivities (Λ o), as well as the thermodynamic association constants (K A), at each experimental temperature for formation of [A+ \(\mathrm{I}_{3}^{-}\) ] ion-pairs. The limiting ionic conductivities ( \(\lambda_{\pm}^{\mathrm{o}}\) ), the diffusion coefficients at infinite dilution (D ±), as well as the Stokes’ radii (r St) were determined for both A+ and \(\mathrm{I}_{3}^{-}\) ions. The thermodynamic parameters for the ionic association process, i.e. the Gibbs energy ( \(\Delta G_{\mathrm{A}}^{\mathrm{o}}\) ), enthalpy ( \(\Delta H_{\mathrm{A}}^{\mathrm{o}}\) ), and entropy ( \(\Delta S_{\mathrm{A}}^{\mathrm{o}}\) ), were also determined. The mobility and diffusivity of the A+ ion increase linearly with increasing temperature because the solvent medium becomes less viscous as the temperature increases. The K A values indicate that significant ion association occurs that is not influenced by temperature changes. The ion-pair formation process is exothermic ( \(\Delta H_{\mathrm{A}}^{\mathrm{o}}<0\) ), leading to the generation of additional entropy ( \(\Delta S_{\mathrm{A}}^{\mathrm{o}}>0\) ). As a result, the Gibbs energy \(\Delta G_{\mathrm{A}}^{\mathrm{o}}\) is negative ( \(\Delta G_{\mathrm{A}}^{\mathrm{o}}<0\) ) and the formation of \([\mathrm{A}^{+}\mathrm{I}_{3}^{-}]\) becomes favorable. CV studies on \([\mathrm{A}^{+}\mathrm{I}_{3}^{-}]\) solutions indicated that the redox pair Cr3+/2+ appears to be quasi-reversible on a glassy carbon electrode but is completely irreversible on platinum and gold electrodes. EIS experiments confirm that, among these three electrodes, the glassy carbon working electrode has the smallest resistance to electron transfer.
Similar content being viewed by others
References
Ue, M.: Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J. Electrochem. Soc. 141, 3336–3342 (1994)
Ue, M., Mori, S.: Mobility and ionic association of lithium salts in a propylene carbonate-ethyl methyl carbonate mixed solvent. J. Electrochem. Soc. 142, 2577–2581 (1995)
Shedlovsky, T.: An equation for electrolytic conductance. J. Am. Chem. Soc. 54, 1405–1411 (1932)
Robinson, R.A., Stokes, R.H.: The variation of equivalent conductance with concentration and temperature. J. Am. Chem. Soc. 76, 1991–1994 (1954)
Fuoss, R.M.: Conductance of dilute solutions of 1-1 electrolytes. J. Am. Chem. Soc. 81, 2659–2662 (1959)
Berns, D.S., Fuoss, R.M.: The dependence of ionic mobility on the dielectric constant of the solvent. J. Am. Chem. Soc. 83, 1321–1323 (1961)
Fuoss, R.M.: Conductance-concentration function for associated symmetrical electrolytes. J. Phys. Chem. 79, 1983 (1975)
Lee, W.H., Wheaton, R.J.: Conductance of symmetrical, unsymmetrical and mixed electrolytes. Relaxation terms. J. Chem. Soc., Faraday Trans. 74, 743–766 (1978)
Lee, W.H., Wheaton, R.J.: Conductance of symmetrical, unsymmetrical and mixed electrolytes. Hydrodynamic terms and complete conductance equation. J. Chem. Soc., Faraday Trans. 74, 1456–1482 (1978)
Lee, W.H., Wheaton, R.J.: Conductance of symmetrical, unsymmetrical and mixed electrolytes. Examination of new model and analysis of data for symmetrical electrolytes. J. Chem. Soc., Faraday Trans. 75, 1128–1145 (1979)
Tsierkezos, N.G., Philippopoulos, A.I.: Conductometric and voltammetric studies on the bis(triphenyl phosphine) ruthenium(II) complex, cis-[RuCl2(L)(PPh3)2], where L: 2-(2′-pyridyl)quinoxaline. Inorg. Chim. Acta 362, 3079–3087 (2009)
Aminabhavi, T.M., Gopalakrishna, B.: Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N,N-dimethylformamide, dimethyl sulfoxide, N,N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1,4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K. J. Chem. Eng. Data 40, 856–861 (1995)
Cunningham, G.P., Vidulich, G.A., Kay, R.L.: Several properties of acetonitrile-water, acetonitrile-methanol, and ethylene carbonate-water systems. J. Chem. Eng. Data 12, 336–337 (1967)
Cotton, F.A., Robinson, W.R., Walton, R.A., Whyman, R.: Some reactions of the octahalodirhenate(III) ions. Reactions with sodium thiocyanate and the preparation of isothiocyanate complexes of rhenium(III) and rhenium(IV). Inorg. Chem. 6, 929–935 (1967)
Rondinini, S., Longhi, P., Mussini, P.R., Mussini, T.: Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures. Pure Appl. Chem. 59, 1693–1702 (1987)
Eliassaf, J., Fuoss, R.M., Lind, J.E.: Conductance of quaternary ammonium hexafluorophosphates in acetonitrile. J. Phys. Chem. 67, 1941–1942 (1963)
Coetzee, J.F., Cunningham, G.P.: Evaluation of single ion conductivities in acetonitrile, nitromethane, and nitrobenzene using tetraisoamylammonium tetraisoamylboride as reference electrolyte. J. Am. Chem. Soc. 87, 2529–2534 (1965)
Gill, D.S., Rodehüser, L., Delpuech, J.J.: Solvation of copper(I) perchlorate in mixed solvent systems containing acetonitrile. A 63Cu, 65Cu and 31P nuclear magnetic resonance study. J. Chem. Soc., Faraday Trans. 86, 2847–2852 (1990)
Gill, D.S., Pathania, V., Vermani, B.K., Sharma, R.P.: Behaviour of some copper(I) and cobalt(III) complexes in acetonitrile and n-butyronitrile at 298.15 K. Z. Phys. Chem. 217, 739–750 (2003)
Ryu, C.K., Endicott, J.F.: Synthesis, spectroscopy, and photophysical behavior of mixed-ligand mono- and bis(polypyridyl)chromium(III) complexes. Examples of efficient, thermally activated excited-state relaxation without back intersystem crossing. Inorg. Chem. 27, 2203–2214 (1988)
Pérez-Dubois, P., Pilar, S., Masaguer, J.R., Arquero, A.: Complexes of 2-acetylpyridinesemicarbazone and 2-acetylpyridinethiosemicarbazone with cobalt(II), chromium(III) and copper(II). Transit. Met. Chem. 12, 200–202 (1987)
Mizuochi, H., Shirakata, S., Kyuno, E., Tsuchiya, R.: Chromium(III) complexes with iminodiacetic acid or l-aspartic acid. Bull. Chem. Soc. Jpn. 43, 397–400 (1970)
Samnani, P.B., Bhattacharya, P.K., Ganeshpure, P.A., Koshy, V.J., Satish, S.: Mixed ligand complexes of chromium(III) and iron(III): synthesis and evaluation as catalysts for oxidation of olefins. J. Mol. Catal. A Chem. 110, 89–94 (1996)
Pura, S.: The effect of temperature on the equivalent conductivities and ion-association constants of some tris-(ethylenediamine)chromium(III) complexes in N,N-dimethylformamide and N,N-dimethylacetamide. J. Solution Chem. 37, 351–364 (2008)
Takahashi, T.: Association constants of hexaamminechromium(III), tris(ethylenediamine) chromium(III) ions with some univalent anions in aqueous solutions. J. Chem. Soc. Jpn. (Nippon Kagaku Kaishi) 21–28 (1975)
Casabó, J., Solans, A., Diaz, C., Ribas, J., Seguí, A., Corbella, M.: Mixed fluoroamine complexes of chromium(III). Transit. Met. Chem. 10, 128–130 (1985)
Mandlik, P.R., Aswar, A.S.: Schiff base metal complexes of chromium(III), manganese(III), iron(III), oxovanadium(IV), zirconium(IV) and dioxouranium(VI). Pol. J. Chem. 77, 129–135 (2003)
Hartl, F., Mahabiersing, T., Le Floch, P., Mathey, F., Ricard, L., Rosa, P., Záliš, S.: Electronic properties of 4,4,5,5-tetramethyl-2,2-biphosphinine (tmbp) in the redox series fac-[Mn(Br)(CO)3(tmbp)], [Mn(CO)3(tmbp)]2, and [Mn(CO)3(tmbp)]−: crystallographic, spectroelectrochemical, and DFT computational study. Inorg. Chem. 42, 4442–4455 (2003)
Walter, B.J., Elliott, C.M.: Interaction of I− and \(\mathrm{I}_{3}^{-}\) with a redox-stable Cr(III)-based structural surrogate for photo-oxidized “N3 Dye”. Inorg. Chem. 40, 5924–5927 (2001)
Lind, J.E., Zwolenik, J.J., Fuoss, R.M.: Calibration of conductance cells at 25° with aqueous solutions of potassium chloride. J. Am. Chem. Soc. 81, 1557–1559 (1959)
Tanaka, T., Komatsu, K.: Synthesis of the singly bonded fullerene dimer C120H2 and the difullerenylacetylene C122H2, and generation of the all-carbon dianion \(\mathrm{C}_{122}^{2-}\) . J. Chem. Soc. Perkin Trans. 1, 1671–1676 (1999)
Das, B., Saha, N.: Electrical conductances of some symmetrical tetraalkylammonium salts in methanol, acetonitrile, and methanol/acetonitrile mixtures at 298.15 K. J. Chem. Eng. Data 45, 2–5 (2000)
Huttemann, T.J., Foxman, B.M., Sperati, C.R., Verkade, J.G.: Transition metal complexes of a constrained phosphite ester. Compounds of cobalt(I), cobalt(III), nickel(II), and nickel(0). Inorg. Chem. 4, 950–953 (1965)
Duckworth, M.W., Fowles, G.W.A., Hoodless, R.A.: Reaction of alkyl cyanides with chlorides and bromides of tervalent titanium and vanadium, and with vanadium(IV) chloride. J. Chem. Soc. 5665–5673 (1963)
Quagliano, J.V., Summers, J.T., Kida, S., Vallarino, L.M.: The donor properties of positively charged ligands. Metal complexes of the β-aminoethyltrimethylammonium and γ-aminopropyltrimethylammonium cations. Inorg. Chem. 3, 1557–1561 (1964)
Walton, R.A.: The reactions of metal halides with alkyl cyanides. Q. Rev. Chem. Soc. 19, 126–143 (1965)
Geary, W.J.: The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971)
Sechkarev, A.V., Fadeev, Y.A., Reva, I.D.: Intermolecular interactions in acetonitrile in a liquid and in a low-temperature argon matrix. J. Appl. Spectrosc. 66, 708–714 (1999)
Pethybridge, A.D., Taba, S.S.: Precise conductimetric studies on aqueous solutions of 2:2 electrolytes. Analysis of data for magnesium sulfate in terms of new equations from Fuoss and from Lee and Wheaton. J. Chem. Soc., Faraday Trans. 76, 368–376 (1980)
Justice, J.C.: An interpretation for the distance parameter of the Fuoss-Onsager conductance equation in the case of ionic association. Electrochim. Acta 16, 701–712 (1971)
Gill, S., Sekhri, M.B.: New approach to the evaluation of single-ion conductances in pure and mixed nonaqueous solvents. J. Chem. Soc., Faraday Trans. 78, 119–125 (1982)
Barczynska, J., Bald, A., Szejgis, A.: Viscometric and conductometric studies for CaCl2 solutions in water-propan-1-ol mixtures at 25°. J. Chem. Soc., Faraday Trans. 86, 2887–2890 (1990)
Prabhu, P.V.S.S., Kumar, T.P., Namboodiri, P.N.N., Gangadharan, R.: Conductivity and viscosity studies of ethylene carbonate based solutions containing lithium perchlorate. J. Appl. Electrochem. 23, 151–156 (1993)
Harkness, A.C., Daggett, H.M.: The electrical conductivities of some tetra-n-alkylammonium salts in acetonitrile. Can. J. Chem. 43, 1215–1221 (1965)
Lide, D.R.: CRC Handbook of Chemistry and Physics, 79th edn. CRC Press, Boca Raton (1998–1999)
Robinson, R.A., Stokes, R.: Electrolyte Solutions, 2nd edn. Butterworth, Stoneham (1959)
Gill, D.S.: An empirical modification of Stokes law and evaluation of solvated radii of ions in non-aqueous solvents. Electrochim. Acta 22, 491–492 (1977)
Gill, D.S.: Evaluation of solvated radii of ions in non-aqueous solvents. Electrochim. Acta 24, 701–703 (1979)
Victor, P.J., Muhuri, P.K., Das, B., Hazra, D.K.: Thermodynamics of ion association and solvation in 2-methoxyethanol: behavior of tetraphenylarsonium, picrate, and tetraphenylborate ions from conductivity and ultrasonic data. J. Phys. Chem. B 103, 11227–11232 (1999)
Tsurko, E.N., Neueder, R., Barthel, J.: Electrolyte conductivity of NaSCN in propan-1-ol and propan-2-ol solutions at temperatures from 228 K to 298 K. J. Chem. Eng. Data 45, 678–681 (2000)
Victor, P.J., Muhuri, P.K., Das, B., Hazra, D.K.: Thermodynamics of ionic association of tetraphenylphosphonium, tetraphenylarsonium, and some common cations in 2-methoxyethanol using conductometry and FT-Raman spectroscopy. J. Phys. Chem. B 104, 5350–5356 (2000)
Bond, A.M., Oldham, K.B., Snook, G.A.: Use of the ferrocene oxidation process to provide both reference electrode potential calibration and a simple measurement (via semiintegration) of the uncompensated resistance in cyclic voltammetric studies in high-resistance organic solvents. Anal. Chem. 72, 3492–3496 (2000)
Nicholson, R.S.: Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965)
Connelly, N.G., Geiger, W.E.: Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996)
Tanaka, N., Ito, T., Tamamushi, R.: The reduction of isothiocyanato-ammine complexes of chromium(III) at the dropping mercury electrode. Bull. Chem. Soc. Jpn. 37, 1430–1434 (1964)
Sato, Y., Tanaka, N.: Polarographic behavior of tris(2,2′-bipyridine)chromium(III) and tris(ethylenediamine)chromium(III) in acetonitrile solutions. Bull. Chem. Soc. Jpn. 42, 1021–1024 (1969)
Soignet, D.M., Hargis, L.G.: Electrochemical investigation of the dichlorobis(2,2′-bipyridine)chromium(III) complex. Inorg. Chem. 12, 877–881 (1973)
Tanaka, N., Itabashi, E., Kyono, E.: Ionic charge effect on the reduction potential of inert-type metal complex. Bull. Chem. Soc. Jpn. 36, 917–919 (1963)
Walsh, J.H., Earley, J.E.: Reduction potentials of some chromium(III) complexes. Inorg. Chem. 3, 343–347 (1964)
Orazem, M.E., Tribollet, B.: Electrochemical Impedance Spectroscopy. Wiley, New York (2008)
Cheng, S., Zhang, J., Zhao, M., Cao, C.: Electrochemical impedance spectroscopy study of Ni/MH batteries. J. Alloys Compd. 293–295, 814–820 (1999)
Mohran, H.S.: Impedance behavior of some reactive systems in aprotic solvents. Am. J. Appl. Sci. 2, 1629–1633 (2005)
Jingjing, Y., Jiangwen, L., Faqiong, Z., Baizhao Zeng, Z.: Characterization of carbon nanotubes-gold nanoparticles composite film modified electrode and voltammetric determination of mefenamic acid. J. Braz. Chem. Soc. 19, 849–855 (2008)
van der Wal, P.D., Sudhölter, E.J.R., Boukamp, B.A., Bouwmeester, H.J.M., Reinhoudt, D.N.: Impedance spectroscopy and surface study of potassium-selective silicone rubber membranes. J. Electroanal. Chem. 317, 153–168 (1991)
Loś, P., Zabinska, G., Kisza, A., Christie, L., Mount, A., Bruce, P.G.: Electrochemical studies of heterogeneous reduction of tetracyanoquinodimethane in poly(ethylene oxide) electrolytes using ac impedance and cyclic voltammetry at an ultramicroelectrode. Phys. Chem. Chem. Phys. 2, 5449–5454 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tsierkezos, N.G., Philippopoulos, A.I. & Ritter, U. Electrochemical Studies on cis-[CrIII(bipy)2(SCN)2]I3 (Where bipy Denotes 2,2′-Bipyridine) in Acetonitrile. J Solution Chem 38, 1536–1557 (2009). https://doi.org/10.1007/s10953-009-9466-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-009-9466-4