Skip to main content
Log in

Heat Capacity of Micellization of Lithium Perfluoroalkanoates in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Specific heats of aqueous solutions of lithium perfluoroalkanoates, from C6 to C9, were determined at 298.15 K at concentrations below and above the critical micelle concentration. Infinite dilution apparent molar heat capacities are compared with literature data for corresponding salts with different counterions. Heat capacities of micellization of these surfactants in water were calculated from the specific heat data and also by measurements of the heat of micellization at two temperatures, 298.15 K and 308.15 K. The data were treated under the assumption of the pseudo-phase separation model. The two series of data agree in the case of perfluorononanoate but diverge for perfluorosurfactants with shorter hydrophobic chains. The results are interpreted in terms of the extent of the applicability of the adopted chemical model. Heat capacities of the micellization process obtained from experimental specific heats compare well with literature values relative to the sodium salts of the examined anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kissa, E. (ed.): Fluorinated Surfactants and Repellents, 2nd edn. Surfactant Science Series, vol. 97. Marcel Dekker Inc., New York (2001)

    Google Scholar 

  2. Muller, N., Simsohn, H.: Investigation of micelle structure by fluorine magnetic resonance. J. Phys. Chem. 75, 942–945 (1971)

    Article  CAS  Google Scholar 

  3. Iijima, H., Kato, T., Söderman, O.: Variation in degree of counterion binding to cesium perfluorooctanoate micelles with surfactant concentration studied by 133Cs and 19F NMR. Langmuir 16, 318–323 (2000)

    Article  CAS  Google Scholar 

  4. Amato, M.E., Caponetti, E., Chillura Martino, D., Pedone, L.: 1H and 19F NMR investigation on mixed hydrocarbon-fluorocarbon micelles. J. Phys. Chem. B 107, 10048–10056 (2003)

    Article  CAS  Google Scholar 

  5. Iijima, H., Koyama, S., Fujio, K., Uzu, Y.: NMR study of the transformation of perfluorinated surfactant solutions. Bull. Chem. Soc. Jpn. 72, 171–177 (1999)

    Article  CAS  Google Scholar 

  6. Guo, W., Brown, A., Fung, B.M.: Micelles and aggregates of fluorinated surfactants. J. Phys. Chem. 95, 1829–1836 (1991)

    Article  CAS  Google Scholar 

  7. Ristori, S., Martini, G.: EPR lineshape analysis of small and large probes introduced into micellar aqueous solutions of ammonium pentadecafluorooctanoate. Langmuir 8, 1937–1942 (1992)

    Article  Google Scholar 

  8. Mukerjee, P., Gumkowski, M.J., Chan, C.C., Sharma, R.: Determination of critical micellization concentrations of perfluorocarboxylates using ultraviolet spectroscopy: some unusual counterion effects. J. Phys. Chem. 94, 8832–8835 (1990)

    Article  CAS  Google Scholar 

  9. Asakawa, T., Miyagishi, S.: Demicellization of sodium perfluorooctanoate and dodecyl sulphate mixtures revealed by pyrene fluorescence quenching. Langmuir 15, 3464–3468 (1999)

    Article  CAS  Google Scholar 

  10. Nakano, T.-Y., Sugihara, G., Nakashima, T., Yu, S.-C.: Thermodynamic study of mixed hydrocarbon/fluorocarbon surfactant system by conductometric and fluorimetric techniques. Lamgmuir 18, 8777–8785 (2002)

    Article  CAS  Google Scholar 

  11. López-Fontán, J.L., Sarmiento, F., Schulz, P.C.: The aggregation of sodium perfluorooctanoate in water. Colloid Polym. Sci. 283, 862–871 (2005)

    Article  Google Scholar 

  12. Iijima, H., Kato, T., Yoshida, H., Imai, M.: Small-angle X-ray and neutron scattering from dilute solutions of cesium perfluorooctanoate. Micellar growth along two dimensions. J. Phys. Chem. 102, 990–995 (1998)

    CAS  Google Scholar 

  13. Berr, S., Jones, R.R.M.: Small-angle neutron scattering from aqueous solutions of sodium perfluorooctanoate above the critical micelle concentration. J. Phys. Chem. 93, 2555–2558 (1989)

    Article  CAS  Google Scholar 

  14. Iampietro, D.J., Kaler, E.W.: Phase behavior and microstructure of aqueous mixtures of cetyltrimethtlammonium bromide and sodium perfluorohexanoate. Langmuir 15, 8590–8601 (1999)

    Article  CAS  Google Scholar 

  15. Méndez Sierra, J.A., Jańczuk, B., González-Martín, M.L., Bruque, J.M.: Electrical conductivity measurements for the systems decylammonium chloride/water and cesium perfluorooctanoate/water in the isotropic phase. Colloids Surf. A, Physicochem. Eng. Asp. 117, 143–149 (1996)

    Article  Google Scholar 

  16. Hoffmann, H., Platz, G., Rehage, H., Reizlein, K., Ulbricht, W.: Messungen zum aggregationsverhalten perfluorierter alkansäuren. Makromol. Chem. 182, 451–481 (1981)

    Article  CAS  Google Scholar 

  17. Muzzalupo, R., Ranieri, G.A., La Mesa, C.: Solution properties of alkali metal perfluoroalkanoates. Colloids Surf. A, Physicochem. Eng. Asp. 104, 327–336 (1995)

    Article  CAS  Google Scholar 

  18. La Mesa, C., Sesta, B.: Micelles in perfluorinated surfactant solutions. J. Phys. Chem. 91, 1450–1454 (1987)

    Article  CAS  Google Scholar 

  19. Mukerjee, P., Korematsu, K., Okawauchi, M., Sugihara, G.: Effect of temperature on the electrical conductivity and the thermodynamics of micelle formation of sodium perfluorooctanoate. J. Phys. Chem. 89, 5308–5312 (1985)

    Article  CAS  Google Scholar 

  20. Gonzalez-Perez, A., Ruso, J.M., Romero, M.J., Blanco, E., Prieto, G., Sarmiento, F.: Application of thermodynamic models to study micellar properties of sodium perfluoroalkyl carboxylates in aqueous solution. Chem. Phys. 313, 245–259 (2005)

    Article  CAS  Google Scholar 

  21. La Mesa, C.: Counterion binding to micelles. Ann. Chim. 77, 93–101 (1987)

    CAS  Google Scholar 

  22. Gianni, P., Barghini, A., Bernazzani, L., Mollica, V.: Calorimetric investigation of the interaction between lithium perfluorononanoate and poly(ethylene glycol) oligomers in water. Langmuir 22, 8001–8009 (2006)

    Article  CAS  Google Scholar 

  23. Johnson, I., Olofsson, G.: Thermodynamics of micelle formation of alkali-metal perfluorononanoates in water. J. Chem. Soc., Faraday Trans. I 84, 551–560 (1988)

    Article  CAS  Google Scholar 

  24. Tomasic, V., Chittofrati, A., Kallay, N.: Thermodynamic properties of aqueous solutions of perfluorinated ionic surfactants. Colloids Surf. A, Physicochem. Eng. Asp. 104, 95–99 (1995)

    Article  CAS  Google Scholar 

  25. De Lisi, R., Milioto, S., De Giacomo, A., Inglese, A.: Thermodynamic properties of sodium n-perfluoroalkanoates in water and in water + cyclodextrins mixtures. Langmuir 15, 5014–5022 (1999)

    Article  Google Scholar 

  26. González-Martín, M.L., Jańczuk, B., MéndezSierra, J.A., Bruque, J.M.: Volumetric properties of the decylammonium chloride and cesium perfluorooctanoate from density measurements. Colloids Surf. A, Physicochem. Eng. Asp. 148, 213–221 (1999)

    Article  Google Scholar 

  27. Kato, S., Harada, S., Nakashima, H., Nomura, H.: Ultrasonic relaxation and volumetric studies of micelle-monomer exchange process in aqueous solutions of sodium and cesium perfluorooctanoates. J. Colloid Interface Sci. 150, 305–313 (1992)

    Article  CAS  Google Scholar 

  28. Perron, G., Desnoyers, J.E.: Volumes and heat capacities of sodium perfluoroalkanoates in water. J. Chem. Eng. Data 42, 172–178 (1997)

    Article  CAS  Google Scholar 

  29. González-Perez, A., Ruso, J.M., Prieto, G., Sarmiento, F.: The self-aggregation of sodium perfluorooctanoate in aqueous solution at different temperatures. J. Surfactants Deterg. 7, 387–395 (2004)

    Article  Google Scholar 

  30. Kunieda, H., Shinoda, K.: Krafft points, critical micelle concentrations, surface tension, and solubilising power of aqueous solutions of fluorinated surfactants. J. Phys. Chem. 80, 2468–2470 (1976)

    Article  CAS  Google Scholar 

  31. Ikawa, Y., Tsuru, S., Murata, Y., Ōkawauchi, M., Shigematsu, M., Sugihara, G.: A pressure and temperature study on solubility and micelle formation of sodium perfluorodecanoate in aqueous solution. J. Solution Chem. 17, 125–137 (1988)

    Article  CAS  Google Scholar 

  32. Gianni, P., Bernazzani, L., Carosi, R., Mollica, V.: Micellization of lithium perfluoroheptanoate and its aggregation on poly(ethylene glycol) oligomers in water. Langmuir 23, 8752–8759 (2007)

    Article  CAS  Google Scholar 

  33. Gianni, P., Bernazzani, L., Guido, C.A., Mollica, V.: Calorimetric investigation of the aggregation of lithium perfluorooctanoate on poly(ethylene glycol) oligomers in water. Thermochim. Acta 451, 73–79 (2006)

    Article  CAS  Google Scholar 

  34. Gianni, P., Barghini, A., Bernazzani, L., Mollica, V., Pizzolla, P.: Aggregation of cesium perfluorooctanoate on poly(ethylene glycol) oligomers in water. J. Phys. Chem. B 110, 9112–9121 (2006)

    Article  CAS  Google Scholar 

  35. Woolley, E.M., Burchfield, T.E.: Model for thermodynamics of ionic surfactant solutions. 2. Enthalpies, heat capacities, and volumes. J. Phys. Chem. 88, 2155–2163 (1984)

    Article  CAS  Google Scholar 

  36. Bach, J., Blandamer, M.J., Burgess, J., Cullis, P.M., Soldi, L.G., Bijma, K., Engberts, J.B.F.N., Kooreman, P.A., Kacperska, A., Chowdoji Rao, K., Subha, M.C.: Titration calorimetric and spectrophotometric studies of micelle formation by alkyltrimethylammonium bromide in aqueous solution. J. Chem. Soc., Faraday Trans. 91, 1229–1235 (1995)

    Article  CAS  Google Scholar 

  37. Shinoda, K., Hutchinson, E.: Pseudo-phase separation model for thermodynamic calculations on micellari solutions. J. Phys. Chem. 66, 577–582 (1962)

    Article  CAS  Google Scholar 

  38. Conti, G., Gianni, P., Papini, A., Matteoli, E.: Apparent molar heat capacity and relative enthalpy of aqueous NaOH between 323 and 523 K. J. Solution Chem. 17, 481–496 (1988)

    Article  CAS  Google Scholar 

  39. Conti, G., Gianni, P., Matteoli, E.: Excess enthalpies and excess heat capacities of the ternary system ethanol + tetrahydrofuran + cyclohexane at 298.15 K. Thermochim. Acta 247, 293–313 (1994)

    Article  CAS  Google Scholar 

  40. Olofsson, I.V.: Apparent molar heat capacities and volumes of aqueous NaCl, KCl, and KNO3 at 298.15 K. Comparison of Picker flow calorimeter with other calorimeters. J. Chem. Thermodyn. 11, 1005–1014 (1979)

    Article  CAS  Google Scholar 

  41. Parker, V.P.: Thermal properties of aqueous uni-univalent electrolytes. U.S. Dept. of Commerce, NSRDS-NBS 2 (1965)

  42. Blanco, E., Messina, P., Ruso, J.M., Prieto, G., Sarmiento, F.: Counterion effect on the solution and thermodynamic properties of lithium perfluoroalkanoates. Mol. Phys. 103, 3271–3281 (2005)

    Article  Google Scholar 

  43. Blanco, E., González-Perez, A., Ruso, J.M., Pedrido, R., Prieto, G., Sarmiento, F.: A comparative study of the physicochemical properties of perfluorinated and hydrogenated amphiphiles. J. Colloid Interface Sci. 288, 247–260 (2005)

    Article  CAS  Google Scholar 

  44. De Lisi, R., Milioto, S., Muratore, N.: Thermodynamic evidence of cyclodextrin-micelle interactions. J. Phys. Chem. B 106, 8944–8953 (2002)

    Article  Google Scholar 

  45. Ropers, M.H., Czichocki, G., Brezesinski, G.: Counterion effect on the thermodynamics of micellization of alkyl sulfates. J. Phys. Chem. B 107, 5281–5288 (2003)

    Article  CAS  Google Scholar 

  46. Li, Y., Reeve, J., Wang, Y., Thomas, R.K., Wang, J., Yan, H.: Microcalorimetric study on micellization of non-ionic surfactants with a benzene ring or adamantine in their hydrophobic chains. J. Phys. Chem. B 109, 16070–16074 (2005)

    Article  CAS  Google Scholar 

  47. Thongngam, M., McClements, D.J.: Influence of pH, ionic strength, and temperature on self-association and interactions of sodium dodecyl sulphate in the absence and presence of chitosan. Langmuir 21, 79–86 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Mollica.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernazzani, L., Carosi, R., Gianni, P. et al. Heat Capacity of Micellization of Lithium Perfluoroalkanoates in Aqueous Solution. J Solution Chem 38, 1369–1379 (2009). https://doi.org/10.1007/s10953-009-9453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9453-9

Keywords

Navigation