Skip to main content
Log in

The Partial Molar Heat Capacities and Expansions of Inosine, 2′-Deoxyinosine and 2′-Deoxyguanosine in Aqueous Solution at 298.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solution densities over the temperature range 288.15 to 313.15 K have been measured for aqueous solutions of the nucleosides inosine, 2′-deoxyinosine, and 2′-deoxyguanosine, from which the partial molar volumes of the solutes at infinite dilution, V o2 , were obtained. The partial molar expansions for the nucleosides at infinite dilution and 298.15 K, E o2 {E o2 =( V o2 / T) p }, were derived from the V o2 results. The V o2 values at 298.15 K for the two sugars D-ribose and 2-deoxyribose also have been determined. The partial molar heat capacities at infinite dilution for all the solutes, C o p,2 , have been determined at 298.15 K. These V o2 ,E o2 , and C o p,2 results are critically compared with all of the results available from the literature, and the use of group additivity to evaluate these solution thermodynamic properties for the sparingly soluble nucleoside guanosine is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Westhof, E.: Water: An integral part of nucleic acid structure. Annu. Rev. Biophys. Biophys. Chem. 17, 125–144 (1988)

    Article  CAS  Google Scholar 

  2. Berman, H.M.: Hydration of DNA: take 2. Curr. Opin. Struct. Biol. 4, 345–350 (1994)

    Article  CAS  Google Scholar 

  3. Auffinger, P., Hashem, Y.: Nucleic acid solvation: from outside to insight. Curr. Opin. Struct. Biol. 17, 325–333 (2007)

    Article  CAS  Google Scholar 

  4. Qu, X., Chaires, J.B.: Hydration changes for DNA intercalation reactions. J. Am. Chem. Soc. 123, 1–7 (2001)

    Article  CAS  Google Scholar 

  5. Chalikian, T.V., Breslauer, K.J.: Volumetric properties of nucleic acids. Biopolymers 48, 264–280 (1998)

    Article  CAS  Google Scholar 

  6. Chalikian, T.V., Breslauer, K.J.: Thermodynamic analysis of biomolecules: a volumetric approach. Curr. Opin. Struct. Biol. 8, 657–664 (1998)

    Article  CAS  Google Scholar 

  7. Lee, A., Chalikian, T.V.: Volumetric characterization of the hydration properties of heterocyclic bases and nucleosides. Biophys. Chem. 92, 209–227 (2001)

    Article  CAS  Google Scholar 

  8. Patel, S.G., Kishore, N.: Thermodynamics of nucleic acid bases and nucleosides in water from 25 to 55 °C. J. Solution Chem. 24, 25–38 (1995)

    Article  CAS  Google Scholar 

  9. Dyke, B.P., Hedwig, G.R.: The partial molar volumes at T=(288.15 to 313.15) K, and the partial molar heat capacities and expansions at T=298.15 K of cytidine, uridine and adenosine in aqueous solution. J. Chem. Thermodyn. 40, 957–965 (2008)

    Article  CAS  Google Scholar 

  10. Buckin, V.A., Kankiya, B.I., Kazaryan, R.L.: Hydration of nucleosides in dilute aqueous solutions. Ultrasonic velocity and density measurements. Biophys. Chem. 34, 211–223 (1989)

    Article  CAS  Google Scholar 

  11. Kishore, N., Bhat, R., Ahluwalia, J.C.: Thermodynamics of some nucleic acid bases and nucleosides in water, and their transfer to aqueous glucose and sucrose solutions at 298.15 K. Biophys. Chem. 33, 227–236 (1989)

    Article  CAS  Google Scholar 

  12. Høiland, H., Skauge, A., Stokkeland, I.: Changes in partial molar volumes and isentropic partial molar compressibilities of stacking of some nucleobases and nucleosides in water at 298.15 K. J. Phys. Chem. 88, 6350–6353 (1984)

    Article  Google Scholar 

  13. Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the glycyl group of proteins in aqueous solution at high pressures. Phys. Chem. Chem. Phys. 10, 884–897 (2008)

    Article  CAS  Google Scholar 

  14. Tewari, Y.B., Klein, R., Vaudin, M.D., Goldberg, R.N.: Saturation molalities and standard molar enthalpies of solution of adenosine(cr), guanosine⋅2H2O(cr), inosine(cr), and xanthosine⋅2H2O(cr) in H2O(l). J. Chem. Thermodyn. 35, 1681–1702 (2003)

    Article  CAS  Google Scholar 

  15. Cabani, S., Gianni, P., Mollica, V., Lepori, L.: Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution. J. Solution Chem. 10, 563–595 (1981)

    Article  CAS  Google Scholar 

  16. Guthrie, J.P.: Additivity schemes permitting the estimation of partial molar heat capacities of organic compounds in aqueous solution. Can. J. Chem. 55, 3700–3706 (1977)

    Article  CAS  Google Scholar 

  17. Hedwig, G.R., Hinz, H.-J.: Group additivity schemes for the calculation of the partial molar heat capacities and volumes of unfolded proteins in aqueous solution. Biophys. Chem. 100, 239–260 (2003)

    Article  CAS  Google Scholar 

  18. Tewari, Y.B., Gery, P.D., Vaudin, M.D., Mighell, A.D., Klein, R., Goldberg, R.N.: Saturation molalities and standard molar enthalpies of solution of 2′-deoxyadenosine⋅H2O(cr), 2′-deoxycytidine⋅H2O(cr), 2′-deoxyguanosine⋅H2O(cr), 2′-deoxyinosine(cr), and 2′-deoxyuridine(cr) in H2O(l). J. Chem. Thermodyn. 37, 233–241 (2005)

    Article  CAS  Google Scholar 

  19. Reading, J.F., Hedwig, G.R.: Thermodynamic properties of peptide solutions. Part 6. The amino acid side-chain contributions to the partial molar volumes and heat capacities of some tripeptides in aqueous solution. J. Chem. Soc., Faraday Trans. 86, 3117–3123 (1990)

    Article  CAS  Google Scholar 

  20. Hedwig, G.R.: Thermodynamic properties of peptide solutions 3. Partial molar volumes and partial molar heat capacities of some tripeptides in aqueous solution. J. Solution Chem. 17, 383–397 (1988)

    Article  CAS  Google Scholar 

  21. Picker, P., Leduc, P.-A., Philip, P.R., Desnoyers, J.E.: Heat capacity of solutions by flow microcalorimetry. J. Chem. Thermodyn. 3, 631–642 (1971)

    Article  CAS  Google Scholar 

  22. Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66–69 (1967)

    Article  CAS  Google Scholar 

  23. Banipal, P.K., Banipal, T.S., Lark, B.S., Ahluwalia, J.C.: Partial molar heat capacities and volumes of some mono-, di- and tri-saccharides in water at 298.15, 308.15 and 318.15 K. J. Chem. Soc., Faraday Trans. 93, 81–87 (1997)

    Article  CAS  Google Scholar 

  24. Galema, S.A., Høiland, H.: Stereochemical aspects of hydration of carbohydrates in aqueous solutions. 3. Density and ultrasound measurements. J. Phys. Chem. 95, 5321–5326 (1991)

    Article  CAS  Google Scholar 

  25. Høiland, H., Holvik, H.: Partial molar volumes and compressibilities of carbohydrates in water. J. Solution Chem. 7, 587–596 (1978)

    Article  Google Scholar 

  26. Uedaira, H., Uedaira, H.: Sugar-water interaction from diffusion measurements. J. Solution Chem. 14, 27–34 (1985)

    Article  CAS  Google Scholar 

  27. Lo Surdo, A., Shin, C., Millero, F.J.: The apparent molal volume and adiabatic compressibility of some organic solutes in water at 25 °C. J. Chem. Eng. Data 23, 197–201 (1978)

    Article  CAS  Google Scholar 

  28. Chalikian, T.V.: Ultrasonic and densimetric characterizations of the hydration properties of polar groups in monosaccharides. J. Phys. Chem. B 102, 6921–6926 (1998)

    Article  CAS  Google Scholar 

  29. Paljk, S., Klofutar, C., Kac, M.: Partial molar volumes and expansibilities of some D-pentoses and D-hexoses in aqueous solution. J. Chem. Eng. Data 35, 41–43 (1990)

    Article  CAS  Google Scholar 

  30. Franks, F., Ravenhill, J.R., Reid, D.S.: Thermodynamic studies of dilute aqueous solutions of cyclic ethers and simple carbohydrates. J. Solution Chem. 1, 3–16 (1972)

    Article  CAS  Google Scholar 

  31. Morel, J.P., Lhermet, C., Morel-Desrosiers, N.: Interactions between cations and sugars. II. Enthalpies, heat capacities, and volumes of aqueous solutions of Ca2+–D-ribose and Ca2+–D-arabinose at 25 °C. Can. J. Chem. 64, 996–1001 (1986)

    Article  CAS  Google Scholar 

  32. Jasra, R.V., Ahluwalia, J.C.: Enthalpies of solution, partial molar heat capacities and apparent molal volumes of sugars and polyols in water. J. Solution Chem. 11, 325–338 (1982)

    CAS  Google Scholar 

  33. Galema, S.A., Engberts, J.B.F.N., Høiland, H., Førland, G.: Informative thermodynamic properties of the effect of stereochemistry on carbohydrate hydration. J. Phys. Chem. 97, 6885–6889 (1993)

    Article  CAS  Google Scholar 

  34. Shahidi, F., Farrell, P.G., Edward, J.T.: Partial molar volumes of organic compounds in water. III. Carbohydrates. J. Solution Chem. 5, 807–816 (1976)

    Article  CAS  Google Scholar 

  35. Stern, J.H., Oliver, D.R.: Thermodynamics of nucleoside-solvent interactions: inosine and adenosine in water and in 1 m methanol between 25 and 35 °C. J. Chem. Eng. Data 25, 221–223 (1980)

    Article  CAS  Google Scholar 

  36. Kawaizumi, F., Kushida, S., Miyahara, Y.: Determination of the specific heat capacities of aqueous solutions of pentose. Bull. Chem. Soc. Jpn. 54, 2282–2285 (1981)

    Article  CAS  Google Scholar 

  37. Stimson, H.F.: Heat units and temperature scales for calorimetry. Am. J. Phys. 23, 614–622 (1955)

    Article  CAS  Google Scholar 

  38. Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York (1969)

    Google Scholar 

  39. Lehninger, A.L.: Biochemistry, 2nd edn. Worth Publishers, New York (1975)

    Google Scholar 

  40. Häckel, M., Hinz, H.-J., Hedwig, G.R.: Partial molar volumes of proteins: amino acid side-chain contributions derived from the partial molar volumes of some tripeptides over the temperature range 10–90 °C. Biophys. Chem. 82, 35–50 (1999)

    Article  Google Scholar 

  41. Buckin, V.A.: Hydration of nucleic bases in dilute aqueous solutions. Apparent molar adiabatic and isothermal compressibilities, apparent molar volumes and their temperature slopes at 25 °C. Biophys. Chem. 29, 283–292 (1988)

    Article  CAS  Google Scholar 

  42. McMillan, W.G., Mayer, J.E.: The statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13, 276–305 (1945)

    Article  CAS  Google Scholar 

  43. Desnoyers, J.E., Perron, G., Avédikian, L., Morel, J.-P.: Enthalpies of the urea–tert-butanol–water system at 25 °C. J. Solution Chem. 5, 631–644 (1976)

    Article  CAS  Google Scholar 

  44. Desnoyers, J.E.: Structural effects in aqueous solutions: a thermodynamic approach. Pure Appl. Chem. 54, 1469–1478 (1982)

    Article  CAS  Google Scholar 

  45. Martin, R.B.: Comparisons of indefinite self-association models. Chem. Rev. 96, 3043–3064 (1996)

    Article  CAS  Google Scholar 

  46. Solie, T.N., Schellman, J.A.: The interactions of nucleosides in aqueous solution. J. Mol. Biol. 33, 61–77 (1968)

    Article  CAS  Google Scholar 

  47. Broom, A.D., Schweizer, M.P., Ts’o, P.O.P.: Interaction and association of bases and nucleosides in aqueous solutions. V. Studies of the association of purine nucleosides by vapor pressure osmometry and by proton magnetic resonance. J. Am. Chem. Soc. 89, 3612–3622 (1967)

    Article  CAS  Google Scholar 

  48. De Visser, C., Perron, G., Desnoyers, J.E.: The heat capacities, volumes, and expansibilities of tert-butyl alcohol water mixtures from 6 to 65 °C. Can. J. Chem. 55, 856–862 (1977)

    Article  Google Scholar 

  49. Jolicoeur, C., Boileau, J.: Chemical models of the hydrophobic interaction. Apparent molal volumes and heat capacities of three symmetrical bolaform electrolytes and their homologous monomers in aqueous solution at 25 °C. J. Solution Chem. 3, 889–903 (1974)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin R. Hedwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedwig, G.R. The Partial Molar Heat Capacities and Expansions of Inosine, 2′-Deoxyinosine and 2′-Deoxyguanosine in Aqueous Solution at 298.15 K. J Solution Chem 38, 1315–1331 (2009). https://doi.org/10.1007/s10953-009-9450-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9450-z

Keywords

Navigation