Skip to main content
Log in

Conductivities of Several Ternary Electrolyte Solutions and Their Binary Subsystems at 293.15, 298.15, and 303.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Conductivities were measured for the ternary systems NaNO3–KNO3–H2O, NaCl–BaCl2–H2O, NaCl–LaCl3–H2O, and their binary subsystems NaNO3–H2O, KNO3–H2O, NaCl–H2O, BaCl2–H2O, and LaCl3–H2O at (293.15, 298.15 and 303.15) K. The results were used to verify the generalized Young’s rule and the semi-ideal solution theory. Comparison of the results shows that the average relative differences between the predicted and measured conductivities are ≤4.2×10−3 for NaNO3–KNO3–H2O, ≤4.6×10−3 for NaCl–BaCl2–H2O, and ≤8.9×10−3 for NaCl–LaCl3–H2O, indicating that the generalized Young’s rule and the semi-ideal solution theory can provide good predictions for the conductivity of mixed electrolyte solutions in terms of the data from their binary subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, D.G.: Binary mixing approximations and relations between specific conductance, molar conductance, equivalent conductance, and ionar conductance for mixtures. J. Phys. Chem. 100, 1220–1226 (1996). doi:10.1021/jp951157u

    Article  CAS  Google Scholar 

  2. Hu, Y.F., Lee, H.: Prediction of viscosity of mixed electrolyte solutions based on the Eyring’s absolute rate theory and the semi-ideal hydration model. Electrochim. Acta 48, 1789–1796 (2003). doi:10.1016/S0013-4686(03)00226-3

    Article  CAS  Google Scholar 

  3. Hu, Y.F.: Prediction of viscosity of mixed electrolyte solutions based on the Eyring’s absolute rate theory and the equations of Patwardhan and Kumar. Chem. Eng. Sci. 59, 2457–2464 (2004). doi:10.1016/j.ces.2003.11.005

    Article  CAS  Google Scholar 

  4. Li, Z.B., Li, Y.G., Lu, J.F.: Surface tension model for concentrated electrolyte aqueous solutions by the Pitzer equation. Ind. Eng. Chem. Res. 38, 1133–1139 (1999). doi:10.1021/ie980465m

    Article  CAS  Google Scholar 

  5. Andrzej, A., Malgorzata, M.L.: Computation of electrical conductivity of multicomponent aqueous systems in wide concentration and temperature ranges. Ind. Eng. Chem. Res. 36, 1932–1943 (1997). doi:10.1021/ie9605903

    Google Scholar 

  6. Young, T.F., Wu, Y.C., Krawetz, A.A.: Thermal effects of the interactions between ions of like charge. Discuss. Faraday Soc. 24, 37–42 (1957). doi:10.1039/df9572400037

    Article  Google Scholar 

  7. Young, T.F., Wu, Y.C., Krawetz, A.A.: General discussion. Discuss. Faraday Soc. 24, 66–82 (1957). doi:10.1039/df9572400037

    Article  Google Scholar 

  8. Hu, Y.F.: The thermodynamics of nonelectrolyte systems at constant activities of any number of components. J. Phys. Chem. B 107, 13168–13177 (2003). doi:10.1021/jp035528f

    Article  CAS  Google Scholar 

  9. Hu, Y.F., Fan, S.S., Liang, D.Q.: The semi-ideal solution theory for mixed ionic solutions at solid-liquid-vapor equilibrium. J. Phys. Chem. A 110, 4276–4284 (2006). Medline doi:10.1021/jp0542672

    Article  CAS  Google Scholar 

  10. Hu, Y.F., Zhang, Z.X., Zhang, Y.H., Fan, S.S., Liang, D.Q.: Viscosity and density of the nonelectrolyte system mannitol + sorbitol + sucrose + H2O and its binary and ternary subsystems at 298.15 K. J. Chem. Eng. Data 51, 438–442 (2006). doi:10.1021/je0503608

    Article  CAS  Google Scholar 

  11. Hu, Y.F.: New predictive equations for the specific and apparent molar heat capacities of multicomponent aqueous solutions conforming to the linear isopiestic relation. Bull. Chem. Soc. Jpn. 74, 47–52 (2001). doi:10.1246/bcsj.74.47

    Article  CAS  Google Scholar 

  12. Wu, Y.C., Koch, W.F., Zhong, E.C., Friedman, H.L.: The cross-square rule for transport in electrolyte mixtures. J. Phys. Chem. 92, 1692–1695 (1988). doi:10.1021/j100317a060

    Article  CAS  Google Scholar 

  13. Hu, Y.F., Zhang, X.M., Li, J.G., Liang, Q.Q.: The semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions. J. Phys. Chem. B 112, 15376–15381 (2008). Medline doi:10.1021/jp805833g

    Article  CAS  Google Scholar 

  14. Hu, Y.F., Wang, Z.C.: Isopiestic studies on (NaCl + NH4Cl + BaCl2)(aq) at the temperature 298.15 K. A quaternary system obeying Zdanovskii’s rule. J. Chem. Thermodyn. 26, 429–433 (1994). doi:10.1006/jcht.1994.1052

    Article  CAS  Google Scholar 

  15. Vogel, A.I., Bassett, J.: Vogel’s Textbook of Quantitative Inorganic Analysis: Including Elementary Instrumental Analysis, 5nd edn. Longman, Essex (1989)

    Google Scholar 

  16. Ruby, C.E., Kawai, J.: The densities, equivalent conductances and relative viscosities at 25°C, of solutions of hydrochloric acid, potassium chloride and sodium chloride, and of their binary and ternary mixtures of constant chloride-ion-constituent content. J. Am. Chem. Soc. 48, 1119–1128 (1926). doi:10.1021/ja01416a001

    Article  CAS  Google Scholar 

  17. Isono, T.: Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, LaCl3, Na2SO4, NaNO3, NaBr, KNO3, KBr, and Cd(NO3)2. J. Chem. Eng. Data 29, 45–52 (1984). doi:10.1021/je00035a016

    Article  CAS  Google Scholar 

  18. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworth, London (1965)

    Google Scholar 

  19. Zdanovskii, A.B.: Regularities in the property variations of mixed solutions. Tr. Solyanoi Lab. Akad. Nauk SSSR 6, 5–70 (1936)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Feng Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XM., Hu, YF., Peng, XM. et al. Conductivities of Several Ternary Electrolyte Solutions and Their Binary Subsystems at 293.15, 298.15, and 303.15 K. J Solution Chem 38, 1295–1306 (2009). https://doi.org/10.1007/s10953-009-9448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9448-6

Keywords

Navigation