Skip to main content
Log in

Density Functional Theory Study of the Ionic Liquid [emim]OH and Complexes [emim]OH(H2O) n  (n=1,2)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work, the structure of the ionic liquid [emim]OH and the influence of water molecules on this ionic liquid were studied by the DFT theory at the B3LYP/6-311++G** level. The calculation results indicate that [emim]OH cannot exist in the form of ion pairs, rather it is inclined to exist the form of water and imidazole carbene. Further studies showed that water mainly influences the anion: it can disperse the negative charge of the O atom of the OH anion and form hydroxyl–water clusters with the anion. When there are two water molecules in the ionic liquid, the system is most likely to exist in the form of ion-pairs that are composed of hydroxyl–water clusters and cations. Configurations formed near the C2-H fragment of imidazole were favored, and hydrogen bonding interaction plays an important role in the ionic liquid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999). doi:10.1021/cr980032t

    Article  CAS  Google Scholar 

  2. Wassercheid, P., Keim, W.: Ionic liquids—new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. 39, 3772–3789 (2000). doi:10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5

    Article  Google Scholar 

  3. Seddon, K.R.: Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68, 351–356 (1997). doi:10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4

    Article  CAS  Google Scholar 

  4. Hagiwara, R., Ito, Y.: Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J. Fluor. Chem. 105, 221–227 (2000). doi:10.1016/S0022-1139(99)00267-5

    Article  CAS  Google Scholar 

  5. Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001). doi:10.1039/b103275p

    Article  CAS  Google Scholar 

  6. Gordon, C.M.: New developments in catalysis using ionic liquids. Appl. Catal. A 222, 101–117 (2001). doi:10.1016/S0926-860X(01)00834-1

    Article  CAS  Google Scholar 

  7. Dupont, J., Souza, R.F., Suarez, P.A.Z.: Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3691 (2002). doi:10.1021/cr010338r

    Article  CAS  Google Scholar 

  8. Larsen, A.S., Holbrey, J.D., Tham, F.S., Reed, C.A.: Designing ionic liquids: imidazolium melts with inert carborane anions. J. Am. Chem. Soc. 122, 7264–7272 (2000). doi:10.1021/ja0007511

    Article  CAS  Google Scholar 

  9. Ranu, B.C., Banerjee, S.: Ionic liquid as catalyst and reaction medium: the dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles. Org. Lett. 7, 3049–3052 (2005). doi:10.1021/ol051004h

    Article  CAS  Google Scholar 

  10. Sun, H., Zhang, D.J., Wang, F., Liu, C.B.: Theoretical study of the mechanism for the Markovnikov addition of imidazole to vinyl acetate catalyzed by the ionic liquid [bmIm]OH. J. Phys. Chem. A 111, 4535–4541 (2007). doi:10.1021/jp070962t

    Article  CAS  Google Scholar 

  11. Visser, A.E., Swatloski, R.P., Reichert, W.M., Griffin, S.T., Rogers, R.D.: Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids. Ind. Eng. Chem. Res. 39, 3596–3604 (2000). doi:10.1021/ie000426m

    Article  CAS  Google Scholar 

  12. Wilkes, J.S., Levisky, J.A., Wilson, R.A., Hussey, C.L.: Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem. 21, 1263–1268 (1982). doi:10.1021/ic00133a078

    Article  CAS  Google Scholar 

  13. Anthony, J.L., Maginn, E.J., Brennecke, J.F.: Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B 106, 7315–7320 (2002). doi:10.1021/jp020631a

    Article  CAS  Google Scholar 

  14. Seddon, K.R., Stark, A.: Selective catalytic oxidation of benzyl alcohol and alkylbenzenes in ionic liquids. Green Chem. 4, 119–123 (2002). doi:10.1039/b111160b

    Article  CAS  Google Scholar 

  15. Anthony, J.L., Maginn, E.J., Brennecke, J.F.: Solution thermodynamics of imidazolium-based ionic liquids and water. J. Phys. Chem. B 105, 10942–10949 (2001). doi:10.1021/jp0112368

    Article  CAS  Google Scholar 

  16. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988). doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  17. Lee, C., Yang, W.T., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  18. Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992). doi:10.1103/PhysRevB.45.13244

    Article  Google Scholar 

  19. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5653 (1993). doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  20. Milet, A., Korona, T., Moszynski, R., Kochanski, E.: Anisotropic intermolecular interactions in van der Waals and hydrogen-bonded complexes: What can we get from density functional calculations? J. Chem. Phys. 111, 7727–7735 (1999). doi:10.1063/1.480161

    Article  CAS  Google Scholar 

  21. Geerlings, P., De Proft, F., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103, 1793–1873 (2003). doi:10.1021/cr990029p

    Article  CAS  Google Scholar 

  22. Talaty, E.R., Raja, S., Storhaug, V.J., Dolle, A., Carper, W.R.: Raman and infrared spectra and ab Initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids. J. Phys. Chem. B 108, 13177–13184 (2004). doi:10.1021/jp040199s

    Article  CAS  Google Scholar 

  23. Meng, Z., Dolle, A., Carper, W.R.: Gas phase model of an ionic liquid: semiempirical and ab initio bonding and molecular structure. J. Mol. Struct. THEOCHEM 585, 119–128 (2002). doi:10.1016/S0166-1280(02)00056-8

    Article  CAS  Google Scholar 

  24. Lagrost, C., Gmouh, S., Vaultier, M., Hapiot, P.: Specific effects of room temperature ionic liquids on cleavage reactivity: example of the carbon-halogen bond breaking in aromatic radical anions. J. Phys. Chem. A 108, 6175–6182 (2004). doi:10.1021/jp049017k

    Article  CAS  Google Scholar 

  25. Dymek, C.J., Grossie, D.A., Fratini, A.V., Adams, W.W.: Evidence for the presence of hydrogen-bonded ion-ion interactions in the molten salt precursor, 1-methyl-3-ethylimidazolium chloride. J. Mol. Struct. 213, 25–34 (1989). doi:10.1016/0022-2860(89)85103-8

    Article  CAS  Google Scholar 

  26. Hanke, C.G., Atamas, N.A., Lynden-Bell, R.M.: Intermolecular potentials for simulations of liquid imidazolium salts. Mol. Phys. 99, 801–809 (2001). doi:10.1080/00268970010018981

    Article  CAS  Google Scholar 

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian03. Gaussian, Inc., Pittsburgh (2003)

    Google Scholar 

  28. Dong, K., Zhang, S.J., Wang, D.X., Yao, X.Q.: Hydrogen bonds in imidazolium ionic liquids. J. Phys. Chem. A 110, 9775–9782 (2006). doi:10.1021/jp054054c

    CAS  Google Scholar 

  29. Paulechka, Y.U., Kabo, G.J., Blokhin, A.V., Vydrov, O.A., Magee, J.W., Frenkel, M.: Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the ideal gas state. J. Chem. Eng. Data 48, 457–462 (2003). doi:10.1021/je025591i

    Article  CAS  Google Scholar 

  30. Formentin, P., Garcia, H., Leyva, A.: Assessment of the suitability of imidazolium ionic liquids as reaction medium for base-catalyzed reactions. Case of Knoevenagel and Claisen-Schmidt reactions. J. Mol. Catal. Chem. 214, 137–142 (2004). doi:10.1016/j.molcata.2003.05.001

    Article  CAS  Google Scholar 

  31. Turner, E.A., Pye, C.C., Singer, R.D.: Use of ab Initio calculations toward the rational design of room temperature ionic liquids. J. Phys. Chem. A 107, 2277–2288 (2003). doi:10.1021/jp021694w

    CAS  Google Scholar 

  32. Rivera-Rubero, S., Baldelli, S.: Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids. J. Am. Chem. Soc. 126, 11788–11789 (2004). doi:10.1021/ja0464894

    Article  CAS  Google Scholar 

  33. Koddermann, T., Wertz, C., Heintz, A., Ludwig, R.: The association of water in ionic liquids: a reliable measure of polarity. Angew. Chem. Int. Ed. 45, 3697–3702 (2006). doi:10.1002/anie.200504471

    Article  Google Scholar 

  34. Cammarata, L., Kazarian, S.G., Salter, P.A., Welton, T.: Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys. 3, 5192–5200 (2001). doi:10.1039/b106900d

    Article  CAS  Google Scholar 

  35. Downard, A., Earle, M.J., Hardacre, C., McMath, S.E.J., Nieuwenhuyzen, M., Teat, S.J.: Structural studies of crystalline 1-alkyl-3-methylimidazolium chloride salts. Chem. Mater. 16, 43–48 (2004). doi:10.1021/cm034344a

    Article  CAS  Google Scholar 

  36. Del Valle, C.P., Novoa, J.J.: Density functional computations on the structure and stability of OH(H2O) n (n=1–3) clusters. A test study. Chem. Phys. Lett. 269, 401–407 (1997). doi:10.1016/S0009-2614(97)00315-1

    Article  Google Scholar 

  37. Wang, Y., Li, H.R., Han, S.J.: A theoretical investigation of the interactions between water molecules and ionic liquids. J. Phys. Chem. B 110, 24646–24651 (2006). doi:10.1021/jp064134w

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Z., Wang, H. & Xing, L. Density Functional Theory Study of the Ionic Liquid [emim]OH and Complexes [emim]OH(H2O) n  (n=1,2). J Solution Chem 38, 1139–1154 (2009). https://doi.org/10.1007/s10953-009-9435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9435-y

Keywords

Navigation