Abstract
In this work, the structure of the ionic liquid [emim]OH and the influence of water molecules on this ionic liquid were studied by the DFT theory at the B3LYP/6-311++G** level. The calculation results indicate that [emim]OH cannot exist in the form of ion pairs, rather it is inclined to exist the form of water and imidazole carbene. Further studies showed that water mainly influences the anion: it can disperse the negative charge of the O atom of the OH− anion and form hydroxyl–water clusters with the anion. When there are two water molecules in the ionic liquid, the system is most likely to exist in the form of ion-pairs that are composed of hydroxyl–water clusters and cations. Configurations formed near the C2-H fragment of imidazole were favored, and hydrogen bonding interaction plays an important role in the ionic liquid system.
Similar content being viewed by others
References
Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999). doi:10.1021/cr980032t
Wassercheid, P., Keim, W.: Ionic liquids—new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. 39, 3772–3789 (2000). doi:10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
Seddon, K.R.: Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68, 351–356 (1997). doi:10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4
Hagiwara, R., Ito, Y.: Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J. Fluor. Chem. 105, 221–227 (2000). doi:10.1016/S0022-1139(99)00267-5
Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001). doi:10.1039/b103275p
Gordon, C.M.: New developments in catalysis using ionic liquids. Appl. Catal. A 222, 101–117 (2001). doi:10.1016/S0926-860X(01)00834-1
Dupont, J., Souza, R.F., Suarez, P.A.Z.: Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3691 (2002). doi:10.1021/cr010338r
Larsen, A.S., Holbrey, J.D., Tham, F.S., Reed, C.A.: Designing ionic liquids: imidazolium melts with inert carborane anions. J. Am. Chem. Soc. 122, 7264–7272 (2000). doi:10.1021/ja0007511
Ranu, B.C., Banerjee, S.: Ionic liquid as catalyst and reaction medium: the dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles. Org. Lett. 7, 3049–3052 (2005). doi:10.1021/ol051004h
Sun, H., Zhang, D.J., Wang, F., Liu, C.B.: Theoretical study of the mechanism for the Markovnikov addition of imidazole to vinyl acetate catalyzed by the ionic liquid [bmIm]OH. J. Phys. Chem. A 111, 4535–4541 (2007). doi:10.1021/jp070962t
Visser, A.E., Swatloski, R.P., Reichert, W.M., Griffin, S.T., Rogers, R.D.: Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids. Ind. Eng. Chem. Res. 39, 3596–3604 (2000). doi:10.1021/ie000426m
Wilkes, J.S., Levisky, J.A., Wilson, R.A., Hussey, C.L.: Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem. 21, 1263–1268 (1982). doi:10.1021/ic00133a078
Anthony, J.L., Maginn, E.J., Brennecke, J.F.: Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B 106, 7315–7320 (2002). doi:10.1021/jp020631a
Seddon, K.R., Stark, A.: Selective catalytic oxidation of benzyl alcohol and alkylbenzenes in ionic liquids. Green Chem. 4, 119–123 (2002). doi:10.1039/b111160b
Anthony, J.L., Maginn, E.J., Brennecke, J.F.: Solution thermodynamics of imidazolium-based ionic liquids and water. J. Phys. Chem. B 105, 10942–10949 (2001). doi:10.1021/jp0112368
Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988). doi:10.1103/PhysRevA.38.3098
Lee, C., Yang, W.T., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). doi:10.1103/PhysRevB.37.785
Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992). doi:10.1103/PhysRevB.45.13244
Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5653 (1993). doi:10.1063/1.464913
Milet, A., Korona, T., Moszynski, R., Kochanski, E.: Anisotropic intermolecular interactions in van der Waals and hydrogen-bonded complexes: What can we get from density functional calculations? J. Chem. Phys. 111, 7727–7735 (1999). doi:10.1063/1.480161
Geerlings, P., De Proft, F., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103, 1793–1873 (2003). doi:10.1021/cr990029p
Talaty, E.R., Raja, S., Storhaug, V.J., Dolle, A., Carper, W.R.: Raman and infrared spectra and ab Initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids. J. Phys. Chem. B 108, 13177–13184 (2004). doi:10.1021/jp040199s
Meng, Z., Dolle, A., Carper, W.R.: Gas phase model of an ionic liquid: semiempirical and ab initio bonding and molecular structure. J. Mol. Struct. THEOCHEM 585, 119–128 (2002). doi:10.1016/S0166-1280(02)00056-8
Lagrost, C., Gmouh, S., Vaultier, M., Hapiot, P.: Specific effects of room temperature ionic liquids on cleavage reactivity: example of the carbon-halogen bond breaking in aromatic radical anions. J. Phys. Chem. A 108, 6175–6182 (2004). doi:10.1021/jp049017k
Dymek, C.J., Grossie, D.A., Fratini, A.V., Adams, W.W.: Evidence for the presence of hydrogen-bonded ion-ion interactions in the molten salt precursor, 1-methyl-3-ethylimidazolium chloride. J. Mol. Struct. 213, 25–34 (1989). doi:10.1016/0022-2860(89)85103-8
Hanke, C.G., Atamas, N.A., Lynden-Bell, R.M.: Intermolecular potentials for simulations of liquid imidazolium salts. Mol. Phys. 99, 801–809 (2001). doi:10.1080/00268970010018981
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian03. Gaussian, Inc., Pittsburgh (2003)
Dong, K., Zhang, S.J., Wang, D.X., Yao, X.Q.: Hydrogen bonds in imidazolium ionic liquids. J. Phys. Chem. A 110, 9775–9782 (2006). doi:10.1021/jp054054c
Paulechka, Y.U., Kabo, G.J., Blokhin, A.V., Vydrov, O.A., Magee, J.W., Frenkel, M.: Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the ideal gas state. J. Chem. Eng. Data 48, 457–462 (2003). doi:10.1021/je025591i
Formentin, P., Garcia, H., Leyva, A.: Assessment of the suitability of imidazolium ionic liquids as reaction medium for base-catalyzed reactions. Case of Knoevenagel and Claisen-Schmidt reactions. J. Mol. Catal. Chem. 214, 137–142 (2004). doi:10.1016/j.molcata.2003.05.001
Turner, E.A., Pye, C.C., Singer, R.D.: Use of ab Initio calculations toward the rational design of room temperature ionic liquids. J. Phys. Chem. A 107, 2277–2288 (2003). doi:10.1021/jp021694w
Rivera-Rubero, S., Baldelli, S.: Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids. J. Am. Chem. Soc. 126, 11788–11789 (2004). doi:10.1021/ja0464894
Koddermann, T., Wertz, C., Heintz, A., Ludwig, R.: The association of water in ionic liquids: a reliable measure of polarity. Angew. Chem. Int. Ed. 45, 3697–3702 (2006). doi:10.1002/anie.200504471
Cammarata, L., Kazarian, S.G., Salter, P.A., Welton, T.: Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys. 3, 5192–5200 (2001). doi:10.1039/b106900d
Downard, A., Earle, M.J., Hardacre, C., McMath, S.E.J., Nieuwenhuyzen, M., Teat, S.J.: Structural studies of crystalline 1-alkyl-3-methylimidazolium chloride salts. Chem. Mater. 16, 43–48 (2004). doi:10.1021/cm034344a
Del Valle, C.P., Novoa, J.J.: Density functional computations on the structure and stability of OH−(H2O) n (n=1–3) clusters. A test study. Chem. Phys. Lett. 269, 401–407 (1997). doi:10.1016/S0009-2614(97)00315-1
Wang, Y., Li, H.R., Han, S.J.: A theoretical investigation of the interactions between water molecules and ionic liquids. J. Phys. Chem. B 110, 24646–24651 (2006). doi:10.1021/jp064134w
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Song, Z., Wang, H. & Xing, L. Density Functional Theory Study of the Ionic Liquid [emim]OH and Complexes [emim]OH(H2O) n (n=1,2). J Solution Chem 38, 1139–1154 (2009). https://doi.org/10.1007/s10953-009-9435-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-009-9435-y