Abstract
A method was proposed for calculating the thermodynamic properties, freezing point depression, boiling point elevation, vapor pressure and enthalpy of vaporization for single solute electrolyte solutions, including aqueous and nonaqueous solutions, based on a modified three-characteristic-parameter correlation model. When compared with the corresponding literature values, the calculated results show that this method gives a very good approximation, especially for 1-1 electrolytes. Although the method is not very suitable for some solutions with very high ionic strength, it is still a very useful technique when experimental data is scarce.
Similar content being viewed by others
References
Adams, L.H.: The measurement of the freezing-point depression of dilute solutions. J. Am. Chem. Soc. 37, 481–496 (1914). doi:10.1021/ja02168a005
Ambrose, D., Sprake, C.H.S.: Thermodynamic properties of organic oxygen compounds. XXV. Vapor pressures and normal boiling temperatures of aliphatic alcohols. J. Chem. Thermodyn. 2, 631–645 (1970). doi:10.1016/0021-9614(70)90038-8
Apelblat, A.: Cryoscopy of uranyl nitrate solutions and activity coefficients. J. Inorg. Nucl. Chem. 39, 1852–1854 (1977). doi:10.1016/0022-1902(77)80220-0
Apelblat, A.: The vapour pressures of water over saturated aqueous solutions of barium chloride, magnesium nitrate, calcium nitrate, potassium carbonate, and zinc sulfate, at temperatures from 283 K to 313 K. J. Chem. Thermodyn. 24, 619–626 (1992). doi:10.1016/S0021-9614(05)80033-3
Apelblat, A.: The vapour pressures of saturated aqueous solutions of potassium bromide, ammonium sulfate, copper(II) sulfate, iron(II) sulfate, and manganese(II) dichloride, at temperatures from 283 K to 308 K. J. Chem. Thermodyn. 25, 1513–1520 (1993). doi:10.1006/jcht.1993.1151
Apelblat, A.: The vapour pressures of saturated aqueous lithium chloride, sodium bromide, sodium nitrate, ammonium nitrate, and ammonium chloride at temperatures from 283 K to 313 K. J. Chem. Thermodyn. 25, 63–71 (1993). doi:10.1006/jcht.1993.1008
Apelblat, A.: Vapour pressures of H2 16O and H2 18O, and saturated aqueous solutions of KCl from T=298 K to T=318 K by the isoteniscopic method. J. Chem. Thermodyn. 30, 1191–1198 (1998). doi:10.1006/jcht.1998.0381
Apelblat, A., Korin, E.: The vapour pressures of saturated aqueous solutions of sodium chloride, sodium bromide, sodium nitrate, sodium nitrite, potassium iodate, and rubidium chloride at temperatures from 277 K to 323 K. J. Chem. Thermodyn. 30, 59–71 (1998). doi:10.1006/jcht.1997.0275
Apelblat, A., Korin, E.: Vapour pressures of saturated aqueous solutions of ammonium iodide, potassium iodide, potassium nitrate, strontium chloride, lithium sulphate, sodium thiosulphate, magnesium nitrate, and uranyl nitrate from T=(278 to 323) K. J. Chem. Thermodyn. 30, 459–471 (1998). doi:10.1006/jcht.1997.0311
Apelblat, A., Korin, E.: The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of aluminium chloride, aluminium nitrate and aluminium sulphate. J. Chem. Thermodyn. 34, 1919–1927 (2002). doi:10.1016/S0021-9614(02)00188-X
Apelblat, A., Korin, E.: The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some ammonium salts. J. Chem. Thermodyn. 35, 699–709 (2003). doi:10.1016/S0021-9614(02)00353-1
Apelblat, A., Korin, E.: The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts. J. Chem. Thermodyn. 38, 152–157 (2006). doi:10.1016/j.jct.2005.04.016
Apelblat, A., Korin, E.: The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate. J. Chem. Thermodyn. 39, 1065–1070 (2007). doi:10.1016/j.jct.2006.12.010
Apelblat, A., Manzurola, E.: The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates. J. Chem. Thermodyn. 39, 1176–1181 (2007). doi:10.1016/j.jct.2006.12.006
Apelblat, A., Mariana, D., Jaime, W., Jacob, Z.: The vapour pressure of water over saturated aqueous solutions of malic, tartaric, and citric acids, at temperatures from 288 K to 323 K. J. Chem. Thermodyn. 27, 35–41 (1995). doi:10.1006/jcht.1995.0004
Apelblat, A., Korin, E., Emanuel, M.: Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate. J. Chem. Thermodyn. 33, 61–69 (2001). doi:10.1006/jcht.2000.0780
Bancroft, W.D., Davis, H.L.: The boiling-points of aqueous solutions. J. Phys. Chem. 33, 591–604 (1929). doi:10.1021/j150298a008
Barthel, J., Lauermann, G.: Vapor pressure of non-aqueous electrolyte solutions. Part 3. Solutions of sodium iodide in ethanol, 2-propanol, and acetonitrile. J. Solution Chem. 15, 869–877 (1986). doi:10.1007/BF00646093
Barthel, J., Neueder, R., Lauermann, G.: Vapor pressure of non-aqueous electrolyte solutions. Part 1. Alkali metal salts in methanol. J. Solution Chem. 14, 621–633 (1985). doi:10.1007/BF00646055
Barthel, J., Lauermann, G., Neueder, R.: Vapor pressure measurements on non-aqueous electrolyte solutions. Part 2. Tetraalkylammonium salts in methanol, activity coefficients of various 1-1 electrolytes at high concentrations. J. Solution Chem. 15, 851–867 (1986). doi:10.1007/BF00646092
Barthel, J., Neueder, R., Poepke, H., Wittmann, H.: Osmotic and activity coefficients of nonaqueous electrolyte solutions. 1. Lithium perchlorate in the protic solvents methanol, ethanol, and 2-propanol. J. Solution Chem. 27, 1055–1066 (1998). doi:10.1023/A:1022637316064
Beyer, R., Steiger, M.: Vapour pressure measurements and thermodynamic properties of aqueous solutions of sodium acetate. J. Chem. Thermodyn. 34, 1057–1071 (2002). doi:10.1006/jcht.2002.0974
Bixon, E., Guerry, R., Tassios, D.: Salt effect on the vapor pressure of pure solvents: methanol with seven salts; at 24.9 °C. J. Chem. Eng. Data 24, 9–11 (1979). doi:10.1021/je60080a005
Bradley, J.B., Pitzer, K.S.: Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hückel parameters to 350 °C and 1 kbar. J. Phys. Chem. 83, 1599–1603 (1979). doi:10.1021/j100475a009
Bridgeman, O.C., Aldrich, E.W.: Vapor pressure tables for water. J. Heat Transf. 86, 279–286 (1964)
Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313–320 (1973). doi:10.1002/aic.690190216
Campbell, A.N., Bhatnagar, O.N.: Osmotic and activity coefficients of sodium hydroxide in water from 150 to 250 °C. J. Chem. Eng. Data 29, 166–168 (1984). doi:10.1021/je00036a020
Chen, C.C., Evans, L.B.: A local composition model for excess Gibbs energy of electrolyte systems. AIChE J. 32, 444–454 (1986). doi:10.1002/aic.690320311
Chen, C.C., Britt, H.I., Boston, J.F., Evans, L.B.: Local composition model for excess Gibbs energy of electrolyte systems. AIChE J. 28, 588–596 (1982). doi:10.1002/aic.690280410
De Coppet, L.C.: On the molecular depression of the freezing-point of water produced by some very concentrated saline solutions. J. Phys. Chem. 8, 531–538 (1904). doi:10.1021/j150062a001
Ge, X.L., Wang, X.D.: A simple two-parameter correlation model for aqueous electrolyte solutions across a wide range of temperature. J. Chem. Eng. Data 54, 179–186 (2009)
Ge, X.L., Wang, X.D., Zhang, M., Seetharaman, S.: Correlation and prediction of activity and osmotic coefficients of aqueous electrolytes at 298.15 K by the modified TCPC model. J. Chem. Eng. Data 52, 538–547 (2007). doi:10.1021/je060451k
Ge, X.L., Wang, X.D., Zhang, M., Seetharaman, S.: A new three-particle-interaction model to predict the thermodynamic properties of different electrolytes. J. Chem. Thermodyn. 39, 602–612 (2007). doi:10.1016/j.jct.2006.09.002
Ge, X.L., Zhang, M., Guo, M., Wang, X.D.: Correlation and prediction of thermodynamic properties of some complex aqueous electrolytes by the modified three-characteristic-parameter correlation model. J. Chem. Eng. Data 53, 950–958 (2008). doi:10.1021/je7006499
Ge, X.L., Zhang, M., Guo, M., Wang, X.D.: Correlation and prediction of thermodynamic properties of non-aqueous electrolytes by the modified TCPC model. J. Chem. Eng. Data 53, 149–159 (2008). doi:10.1021/je700446q
Haghighi, H., Chapoy, A., Tohidi, B.: Freezing point depression of electrolyte solutions: experimental measurements and modeling using the cubic-plus-association equation of state. Ind. Eng. Chem. Res. 47, 3983–3989 (2008). doi:10.1021/ie800017e
Hall, R.E., Harkins, W.D.: The free energy of dilution and the freezing-point lowering in solutions of some salts of various types of ionization, and of salt mixtures. J. Am. Chem. Soc. 38, 2658–2676 (1916). doi:10.1021/ja02269a009
Huang, S.H., Radosz, M.: Equation of state for small, large, poly disperse, and associating molecules. Ind. Eng. Chem. Res. 29, 2284–2294 (1990). doi:10.1021/ie00107a014
Hunter, J.B., Harding, B.: Thermodynamic properties of aqueous salt solutions. Latent heats of vaporization and other properties by the gas current method. Ind. Eng. Chem. 36, 945–953 (1944). doi:10.1021/ie50418a019
Johnson, G.C., Smith, R.P.: The boiling point elevation. IV. Potassium bromide in water. J. Am. Chem. Soc. 63, 1351–1353 (1941). doi:10.1021/ja01850a060
Li, W.C.: Physical Chemistry of Metallurgy and Materials. Metallurgy Press, Beijing (2001)
Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 87th edn. CRC Press, Boca Raton (2006–2007)
Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 88th edn. CRC Press, Boca Raton (2007–2008)
Lin, C.L., Tseng, H.C., Lee, L.S.: A three-characteristic-parameter correlation model for strong electrolyte solutions. Fluid Phase Equil. 152, 169–185 (1998). doi:10.1016/S0378-3812(98)00393-8
Liu, C.T., Lindsay, W.T. Jr.: Vapor pressure of D2O from 106 to 300 °C. J. Chem. Eng. Data 15, 510–513 (1970). doi:10.1021/je60047a015
Lu, J.F., Yu, Y.X., Li, Y.G.: Modification and application of the mean spherical approximation method. Fluid Phase Equil. 85, 81–100 (1996). doi:10.1016/0378-3812(93)80006-9
Modell, M., Reid, R.C.: Thermodynamics and Its Applications. Prentice Hall, Englewood Cliffs (1974)
Mohammed, T.Z.M., Jaber, J.S.: Isopiestic determination of osmotic coefficients and evaluation of vapor pressures for electrolyte solutions of some lithium salts in ethanol. Fluid Phase Equil. 166, 207–223 (1999). doi:10.1016/S0378-3812(99)00293-9
Møller, N.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-Ca-Cl-SO4−H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988). doi:10.1016/0016-7037(88)90354-7
Nasehzadeh, A., Noroozian, E., Omrani, H.: Experimental and theoretical studies of thermodynamics of lithium halide solutions–ethanol mixtures. J. Chem. Thermodyn. 36, 245–252 (2004). doi:10.1016/j.jct.2003.12.002
Nasirzadeh, K., Neueder, R., Kunz, W.: Vapor pressures, osmotic and activity coefficients for (LiBr + acetonitrile) between the temperatures (298.15 and 343.15) K. J. Chem. Thermodyn. 36, 511–517 (2004). doi:10.1016/j.jct.2004.03.007
Nasirzadeh, K., Neueder, R.: Measurement and correlation of osmotic coefficients and evaluation of vapor pressure for electrolyte solutions of LiClO4 and LiNO3 in methanol at 25 °C. J. Mol. Liq. 113, 13–20 (2004). doi:10.1016/j.molliq.2004.02.028
Nasirzadeh, K., Salabat, A.: Isopiestic determination of osmotic coefficients and evaluation of vapor pressures for solutions of sodium bromide and sodium thiocyanate in methanol at 25 °C. J. Mol. Liq. 106, 1–14 (2003). doi:10.1016/S0167-7322(03)00016-3
Nasirzadeh, K., Neueder, R., Kunz, W.: Vapor pressures and osmotic coefficients of aqueous LiOH solutions at temperatures ranging from 298.15 to 363.15 K. Ind. Eng. Chem. Res. 44, 3807–3814 (2005). doi:10.1021/ie0489148
Patil, K.R., Tripathi, A.D., Pathak, G., Katti, S.S.: Thermodynamic properties of aqueous electrolyte solutions. 1. Vapor pressure of aqueous solutions of LiCl, LiBr, and LiI. J. Chem. Eng. Data 35, 166–168 (1990). doi:10.1021/je00060a020
Patil, K.R., Tripathi, A.D., Pathak, G., Katti, S.S.: Thermodynamic properties of aqueous electrolyte solutions. 2. Vapor pressure of aqueous solutions of NaBr, NaI, KCl, KBr, KI, RbCl, CsCl, CsBr, CsI, MgCl2, CaCl2, CaBr2, CaI2, SrCl2, SrBr2, SrI2, BaCl2, and BaBr2. J. Chem. Eng. Data 36, 225–230 (1991). doi:10.1021/je00002a021
Pepela, C.N., Dunlop, P.J.: A re-examination of the vapor pressure of aqueous sodium chloride solutions at 25 °C. J. Chem. Thermodyn. 4, 255–258 (1972). doi:10.1016/0021-9614(72)90064-X
Pitzer, K.S., Mayogra, G.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973). doi:10.1021/j100621a026
Randall, M., Scott, G.N.: The freezing point and activity coefficient of aqueous barium nitrate, sodium sulfate and sulfuric acid. J. Am. Chem. Soc. 49, 647–656 (1927). doi:10.1021/ja01402a007
Safarov, J.T.: Study of thermodynamic properties of binary solutions of lithium bromide or lithium chloride with methanol. Fluid Phase Equil. 236, 87–95 (2005). doi:10.1016/j.fluid.2005.07.002
Safarov, J.T.: Vapor pressures of lithium bromide or lithium chloride and ethanol solutions. Fluid Phase Equil. 243, 38–44 (2006). doi:10.1016/j.fluid.2006.02.012
Safarov, J.T.: Investigation of the vapor pressure p of zinc bromide or zinc chloride solutions with methanol by static method. J. Chem. Thermodyn. 38, 304–311 (2006). doi:10.1016/j.jct.2005.05.017
Safarov, J.T.: Vapor pressure measurements of binary solutions of CaCl2 with methanol and ethanol at (298.15 to 323.15) K using a static method. J. Chem. Eng. Data 51, 360–365 (2006). doi:10.1021/je0502086
Salimi, H.R., Taghikhani, V., Ghotbi, C.: Application of the GV-MSA model to the electrolyte solutions containing mixed salts and mixed solvents. Fluid Phase Equil. 231, 67–76 (2005). doi:10.1016/j.fluid.2004.12.015
Sardroodi, J.J., Seyedahmadian, S.M., Sadr, M.H., Kazemi, Y.: Isopiestic study of the solutions of MnCl2, CoCl2 and NiCl2 in methanol and ethanol at 298.15 K. Fluid Phase Equil. 240, 114–121 (2006). doi:10.1016/j.fluid.2005.12.014
Saxton, B., Smith, R.P.: The activity coefficient of potassium chloride in aqueous solution from boiling point data. J. Am. Chem. Soc. 54, 2626–2636 (1932). doi:10.1021/ja01346a005
Smith, R.P.: The boiling point elevation. II. Sodium chloride 0.05 to 1.0 M and 60 °C to 100 °C. J. Am. Chem. Soc. 61, 500–503 (1939). doi:10.1021/ja01871a079
Spencer, R.J., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4−H2O system at temperatures below 25 °C. Geochim. Cosmochim. Acta 54, 575–590 (1990). doi:10.1016/0016-7037(90)90354-N
Tomasula, P., Czerwienski, G.J., Tassios, D.: Vapor pressure and osmotic coefficients: electrolyte solutions of methanol. Fluid Phase Equil. 38, 129–153 (1987). doi:10.1016/0378-3812(87)90008-2
Verevkin, S., Safarov, J.T., Bich, E., Hassel, E., Heintz, A.: Study of vapour pressure of lithium nitrate solutions in ethanol. J. Chem. Thermodyn. 38, 611–616 (2006). doi:10.1016/j.jct.2005.07.015
Washburn, E.W.: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, 1st electronic edn., pp. 1926–1930. Knovel, New York (2003)
Worth, H.R.: The Freezing points of concentrated solutions and the free energy of solution of salts. J. Am. Chem. Soc. 40, 1204–1213 (1918). doi:10.1021/ja02241a008
Zafarani-Moattar, M.T., Jahanbin-Sardroodi, J.: Measurement and correlation of osmotic coefficients and evaluation of vapor pressures for solutions of CaCl2 and Ca(NO3)2 in ethanol at 298 K. Fluid Phase Equil. 172, 221–235 (2000). doi:10.1016/S0378-3812(00)00372-1
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article is available at http://dx.doi.org/10.1007/s10953-013-9993-x.
Rights and permissions
About this article
Cite this article
Ge, X., Wang, X. Calculations of Freezing Point Depression, Boiling Point Elevation, Vapor Pressure and Enthalpies of Vaporization of Electrolyte Solutions by a Modified Three-Characteristic Parameter Correlation Model. J Solution Chem 38, 1097–1117 (2009). https://doi.org/10.1007/s10953-009-9433-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-009-9433-0