Skip to main content
Log in

Kinetics for the Oxygen Evolution Reaction and Application of the Ti/SnO2 + RuO2 + MnO2 Electrode

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A Ti/SnO2 + RuO2 + MnO2 electrode was prepared by thermal decomposition of their salts. Results from SEM and XPS analyses, respectively, indicate that the coating layer exhibits a compact structure and the oxidation state of Mn in the coating layer is +IV. The experimental activation energy for the oxygen evolution reaction, which increased linearly with increasing overpotential, is about 8 kJ⋅mol−1 at the equilibrium potential (η=0). The electrocatalytic characteristics of the anode are discussed in terms of ligand substitution reaction mechanisms (Sn1 and Sn2). It was found that the transition state for oxygen evolution at the anode in acidic solution follows a dissociative mechanism (Sn1 reaction). The Ti/SnO2 + RuO2 + MnO2 anode in conjunction with UV illumination was used to degrade phenol solutions, where the concentration of phenol remaining was determined by high-performance liquid chromatography (HPLC). The results indicate that the degradation efficiency of phenol on the anode can reach 96.3% after photoelectrocatalytic oxidation for 3 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beer, H.B.: The invention and industrial development of metal anodes. J. Electrochem. Soc. 127, 303C–307C (1980). doi:10.1149/1.2130021

    Article  CAS  Google Scholar 

  2. Trasatti, S.: Electrocatalysis: understanding the success of DSA. Electrochim. Acta 45, 2377–2385 (2000). doi:10.1016/S0013-4686(00)00338-8

    Article  CAS  Google Scholar 

  3. Wang, Y.Q., Gu, B., Xu, W.L.: Electro-catalytic degradation of phenol on several metal-oxide anodes. J. Hazard. Mater. 162, 1159–1164 (2009). Medline doi:10.1016/j.jhazmat.2008.05.164

    Article  CAS  Google Scholar 

  4. Li, M., Feng, C.P., Hu, W.W., Zhang, Z.Y.: Sugiura, Norio: Electrochemical degradation of phenol using electrodes of Ti/RuO2–Pt and Ti/IrO2–Pt. J. Hazard. Mater. 162, 455–462 (2009). Medline doi:10.1016/j.jhazmat.2008.05.063

    Article  CAS  Google Scholar 

  5. Monteiro, O.C., Mendonca, M.H.M., Pereira, M.I.S., Nogueira, J.M.F.: Preparation of lead and tin oxide thin films by spin coating and their application on the electrodegradation of organic pollutants. J. Solid State Electrochem. 10, 41–47 (2006). doi:10.1007/s10008-005-0652-z

    Article  CAS  Google Scholar 

  6. Iniesta, J., Gonzalez-Garcia, J., Exposito, E., Montiel, V., Aldaz, A.: Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes. Water Res. 35, 3291–3300 (2001). Medline doi:10.1016/S0043-1354(01)00043-4

    Article  CAS  Google Scholar 

  7. Li, X.Y., Cui, Y.H., Feng, Y.J., Xie, Z.M., Gu, J.D.: Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res. 39, 1972–1981 (2005). Medline doi:10.1016/j.watres.2005.02.021

    Google Scholar 

  8. Feng, Y.J., Li, X.Y.: Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res. 37, 2399–2407 (2003). Medline doi:10.1016/S0043-1354(03)00026-5

    Article  CAS  Google Scholar 

  9. Shariq, V.M., Keiichi, T.: Photocatalytic degradation of aqueous pollutants using silica-modified TiO2. Water Res. 37, 3992–3996 (2003). Medline doi:10.1016/S0043-1354(03)00333-6

    Article  Google Scholar 

  10. Fan, C.M., Xue, P., Sun, Y.P.: Preparation of nano-TiO2 doped with cerium and its photocatalytic activity. J. Rare Earths 24, 309–313 (2006). doi:10.1016/S1002-0721(06)60115-4

    Article  Google Scholar 

  11. Fockedey, E., Van Lierde, A.: Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes. Water Res. 36, 4169–4175 (2002). Medline doi:10.1016/S0043-1354(02)00103-3

    Article  CAS  Google Scholar 

  12. Gotsi, M., Kalogerakis, N., Psillakis, E., Samaras, P., Mantzavinos, D.: Electrochemical oxidation of olive oil mill wastewaters. Water Res. 39, 4177–4187 (2005). Medline doi:10.1016/j.watres.2005.07.037

    Article  CAS  Google Scholar 

  13. Ye, Z.G., Meng, H.M., Chen, D., Yu, H.Y., Huan, Z.S., Wang, X.D., Sun, D.B.: Structure and characteristics of Ti/IrO2(x)+ MnO2(1−x) anode for oxygen evolution. Solid State Sci. 10, 346–354 (2008). doi:10.1016/j.solidstatesciences.2007.09.011

    Article  CAS  Google Scholar 

  14. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). Medline doi:10.1038/238037a0

    Article  CAS  Google Scholar 

  15. Duan, L.B., Rao, G.H., Yu, J., Wang, Y.C., Liu, G.Y., Liang, J.K.: Structural and magnetic properties of chemically synthesized Sn1−X Mn X O2 nanocrystalline powders. J. Appl. Phys. 101, 063917–063917-6 (2007). doi:10.1063/1.2715840

    Article  Google Scholar 

  16. Morita, M., Iwakura, C., Tamura, H.: The anodic characteristics of modified Mn oxide electrode: Ti/RuO x /MnO x . Electrochim. Acta 23, 331–335 (1978). doi:10.1016/0013-4686(78)80070-X

    Article  CAS  Google Scholar 

  17. Inai, M., Iwakura, C., Tamura, H.: Experimental activation energies for oxygen evolution reaction on transition metal oxide electrodes in acidic solutions. Denki Kagaku 48, 173–179 (1980)

    CAS  Google Scholar 

  18. Vinodgopal, K., Stafford, U., Gray, K.A., Kamat, P.V.: Electrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized TiO2 particulate films. J. Phys. Chem. 98, 6797–6803 (1994). doi:10.1021/j100078a023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhai Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Z., Sun, Y., Fan, C. et al. Kinetics for the Oxygen Evolution Reaction and Application of the Ti/SnO2 + RuO2 + MnO2 Electrode. J Solution Chem 38, 1119–1127 (2009). https://doi.org/10.1007/s10953-009-9432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9432-1

Keywords

Navigation