Abstract
A Ti/SnO2 + RuO2 + MnO2 electrode was prepared by thermal decomposition of their salts. Results from SEM and XPS analyses, respectively, indicate that the coating layer exhibits a compact structure and the oxidation state of Mn in the coating layer is +IV. The experimental activation energy for the oxygen evolution reaction, which increased linearly with increasing overpotential, is about 8 kJ⋅mol−1 at the equilibrium potential (η=0). The electrocatalytic characteristics of the anode are discussed in terms of ligand substitution reaction mechanisms (Sn1 and Sn2). It was found that the transition state for oxygen evolution at the anode in acidic solution follows a dissociative mechanism (Sn1 reaction). The Ti/SnO2 + RuO2 + MnO2 anode in conjunction with UV illumination was used to degrade phenol solutions, where the concentration of phenol remaining was determined by high-performance liquid chromatography (HPLC). The results indicate that the degradation efficiency of phenol on the anode can reach 96.3% after photoelectrocatalytic oxidation for 3 h.
Similar content being viewed by others
References
Beer, H.B.: The invention and industrial development of metal anodes. J. Electrochem. Soc. 127, 303C–307C (1980). doi:10.1149/1.2130021
Trasatti, S.: Electrocatalysis: understanding the success of DSA. Electrochim. Acta 45, 2377–2385 (2000). doi:10.1016/S0013-4686(00)00338-8
Wang, Y.Q., Gu, B., Xu, W.L.: Electro-catalytic degradation of phenol on several metal-oxide anodes. J. Hazard. Mater. 162, 1159–1164 (2009). Medline doi:10.1016/j.jhazmat.2008.05.164
Li, M., Feng, C.P., Hu, W.W., Zhang, Z.Y.: Sugiura, Norio: Electrochemical degradation of phenol using electrodes of Ti/RuO2–Pt and Ti/IrO2–Pt. J. Hazard. Mater. 162, 455–462 (2009). Medline doi:10.1016/j.jhazmat.2008.05.063
Monteiro, O.C., Mendonca, M.H.M., Pereira, M.I.S., Nogueira, J.M.F.: Preparation of lead and tin oxide thin films by spin coating and their application on the electrodegradation of organic pollutants. J. Solid State Electrochem. 10, 41–47 (2006). doi:10.1007/s10008-005-0652-z
Iniesta, J., Gonzalez-Garcia, J., Exposito, E., Montiel, V., Aldaz, A.: Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes. Water Res. 35, 3291–3300 (2001). Medline doi:10.1016/S0043-1354(01)00043-4
Li, X.Y., Cui, Y.H., Feng, Y.J., Xie, Z.M., Gu, J.D.: Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res. 39, 1972–1981 (2005). Medline doi:10.1016/j.watres.2005.02.021
Feng, Y.J., Li, X.Y.: Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res. 37, 2399–2407 (2003). Medline doi:10.1016/S0043-1354(03)00026-5
Shariq, V.M., Keiichi, T.: Photocatalytic degradation of aqueous pollutants using silica-modified TiO2. Water Res. 37, 3992–3996 (2003). Medline doi:10.1016/S0043-1354(03)00333-6
Fan, C.M., Xue, P., Sun, Y.P.: Preparation of nano-TiO2 doped with cerium and its photocatalytic activity. J. Rare Earths 24, 309–313 (2006). doi:10.1016/S1002-0721(06)60115-4
Fockedey, E., Van Lierde, A.: Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes. Water Res. 36, 4169–4175 (2002). Medline doi:10.1016/S0043-1354(02)00103-3
Gotsi, M., Kalogerakis, N., Psillakis, E., Samaras, P., Mantzavinos, D.: Electrochemical oxidation of olive oil mill wastewaters. Water Res. 39, 4177–4187 (2005). Medline doi:10.1016/j.watres.2005.07.037
Ye, Z.G., Meng, H.M., Chen, D., Yu, H.Y., Huan, Z.S., Wang, X.D., Sun, D.B.: Structure and characteristics of Ti/IrO2(x)+ MnO2(1−x) anode for oxygen evolution. Solid State Sci. 10, 346–354 (2008). doi:10.1016/j.solidstatesciences.2007.09.011
Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). Medline doi:10.1038/238037a0
Duan, L.B., Rao, G.H., Yu, J., Wang, Y.C., Liu, G.Y., Liang, J.K.: Structural and magnetic properties of chemically synthesized Sn1−X Mn X O2 nanocrystalline powders. J. Appl. Phys. 101, 063917–063917-6 (2007). doi:10.1063/1.2715840
Morita, M., Iwakura, C., Tamura, H.: The anodic characteristics of modified Mn oxide electrode: Ti/RuO x /MnO x . Electrochim. Acta 23, 331–335 (1978). doi:10.1016/0013-4686(78)80070-X
Inai, M., Iwakura, C., Tamura, H.: Experimental activation energies for oxygen evolution reaction on transition metal oxide electrodes in acidic solutions. Denki Kagaku 48, 173–179 (1980)
Vinodgopal, K., Stafford, U., Gray, K.A., Kamat, P.V.: Electrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized TiO2 particulate films. J. Phys. Chem. 98, 6797–6803 (1994). doi:10.1021/j100078a023
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liang, Z., Sun, Y., Fan, C. et al. Kinetics for the Oxygen Evolution Reaction and Application of the Ti/SnO2 + RuO2 + MnO2 Electrode. J Solution Chem 38, 1119–1127 (2009). https://doi.org/10.1007/s10953-009-9432-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-009-9432-1