Skip to main content

Advertisement

Log in

Thermal Conductivity of Aqueous K2CO3 Solutions at High Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Thermal conductivities of five aqueous K2CO3 solutions of (5, 10, 15, 20, and 25) mass-% have been measured with a concentric-cylinder (steady state) technique. Measurements were made at pressures slightly above the vapor saturation curve and at temperatures from (293.15 to 573.15) K. The total uncertainties of the thermal conductivity, temperature, and concentration measurements were estimated to be less than 2%, 30 mK, and 0.02%, respectively. A maximum in the thermal conductivity was found around 413 K. The measured values of thermal conductivity were compared with data reported in the literature and with values calculated from various prediction techniques. New correlation and prediction equations for the thermal conductivity of solutions studied here were obtained from the experimental data as a function of temperature and composition. The average absolute deviation (AAD) between the measured and predicted values of the thermal conductivity is 0.17%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhundov, T.C., Iskenderov, A.I., Akhmedova, L.A.: Thermal conductivity of aqueous solutions of Ca(NO3)2. Izv. Vuzov, Neft Gas 3, 49–52 (1994)

    Google Scholar 

  2. Akhundov, T.C., Iskenderov, A.I., Akhmedova, L.A.: Thermal conductivity of aqueous solutions of Mg(NO3)2. Izv. Vuzov, Neft Gas 1, 56–58 (1995)

    Google Scholar 

  3. Abdulagatov, I.M., Akhmedova-Azizova, L.A., Azizov, N.D.: Thermal conductivity of binary aqueous NaBr and KBr and ternary H2O+NaBr+KBr solutions at temperatures from 294 to 577 K and pressures up to 40 MPa. J. Chem. Eng. Data 49, 1727–1737 (2004). doi:10.1021/je049814b

    Article  CAS  Google Scholar 

  4. Abdulagatov, I.M., Akhmedova-Azizova, L.A., Azizov, N.D.: Thermal conductivity of aqueous Sr(NO3)2 and LiNO3 solutions at high temperatures and high pressures. J. Chem. Eng. Data 49, 688–704 (2004). doi:10.1021/je0342466

    Article  CAS  Google Scholar 

  5. Akhmedova-Azizova, L.A.: Thermal conductivity and viscosity of aqueous Mg(NO3)2, Sr(NO3)2, Ca(NO3)2, and Ba(NO3)2 solutions. J. Chem. Eng. Data 51, 2088–2090 (2006). doi:10.1021/je060202w

    Article  CAS  Google Scholar 

  6. Akhmedova-Azizova, L.A., Babaeva, S.S.: Thermal conductivity of aqueous Na2CO3 solutions at high temperatures and high pressures. J. Chem. Eng. Data 53, 462–465 (2008). doi:10.1021/je7005506

    Article  CAS  Google Scholar 

  7. Riedel, L.: The heat conductivity of aqueous solutions of strong electrolytes. Chem. Ing. Tech. 23, 59–64 (1951). doi:10.1002/cite.330230303

    Article  CAS  Google Scholar 

  8. Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous solutions of K2CO3 and NaI in the temperature range 298–473 K at pressures up to 100 MPa. In: Procedures 4th Asian Thermophysical Properties Conference, pp. 499–502. Tokyo (1995)

  9. Kestin, J., Sengers, J.V., Kamgar-Parsi, B., Levelt Sengers, J.M.H.: Thermophysical properties of fluid H2O. J. Phys. Chem. Ref. Data 13, 175–189 (1984)

    Article  CAS  Google Scholar 

  10. Gershuni, G.Z.: Thermal convection in the space between vertical coaxial cylinders. Dok. Akad. Nauk USSR 86, 697–698 (1952)

    Google Scholar 

  11. Gonçalves, F.A., Kestin, J.: The viscosity of Na2CO3 and K2CO3 aqueous solutions in the range 20–60 °C. Int. J. Thermophys. 2, 315–322 (1981). doi:10.1007/BF00498762

    Article  Google Scholar 

  12. Aseyev, G.G.: Electrolytes. Properties of Solutions. Methods for Calculation of Multicomponent Systems and Experimental Data on Thermal Conductivity and Surface Tension. Begell-House, New York (1998)

    Google Scholar 

  13. Abdulagatov, I.M., Abdulagatov, A.I., Kamalov, A.N.: Thermophysical Properties of Pure Fluids and Aqueous Systems at High Temperatures and Pressures. Begell-House, New York (2005)

    Google Scholar 

  14. Krönert, P., Schuberthy, H.: Behavior of heat-conductivity of some phosphate-solutions and nitrate-solutions. Chem.-Thechn. 29, 552–563 (1977)

    Google Scholar 

  15. Vargaftik, N.B., Osminin, Y.P.: Thermal conductivity of aqueous salt, acid, and alkali solutions. Teploenergetika 7, 15–16 (1956)

    Google Scholar 

  16. Chiquillo, A.: Measurements of the relative thermal conductivity of aqueous salt solutions with a transient hot-wire method. Juris Druck and Verlag, Zurich (1967)

  17. Losenicky, Z.: Thermal conductivity of aqueous solutions of alkali hydroxides. J. Phys. Chem. 73, 451–452 (1969). doi:10.1021/j100722a036

    Article  CAS  Google Scholar 

  18. Magomedov, U.B.: Thermal conductivity of binary and multicomponent aqueous solutions of inorganic substances at high parameters of state. Russ. High Temp. 39, 221–226 (2001). doi:10.1023/A:1017518731726

    Article  CAS  Google Scholar 

  19. Viswanath, D.S., Rao, M.B.: Thermal conductivity of liquids and its temperature dependence. J. Phys. D 3, 1444–1450 (1970). doi:10.1088/0022-3727/3/10/309

    Article  CAS  Google Scholar 

  20. Klaas, D.M., Viswanath, D.S.: A correlation for the prediction of thermal conductivity of liquids. Ind. Eng. Chem. Res. 37, 2064–2068 (1998). doi:10.1021/ie9706830

    Article  CAS  Google Scholar 

  21. Falkenhagen, H., Dole, M.: Die innere Reibung von elektrolytischen Losungen und ihre Deutung nach der Debyeschen Theorie. Z. Phys. 30, 611–622 (1929)

    CAS  Google Scholar 

  22. Onsager, L., Fuoss, R.M.: Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes. J. Phys. Chem. 36, 2689–2778 (1932). doi:10.1021/j150341a001

    Article  CAS  Google Scholar 

  23. Onsager, L.: The theory of electrolytes. Z. Phys. 27, 388–392 (1926)

    CAS  Google Scholar 

  24. Debye, P., Hückel, H.: Bemerkungen zu einem Satze über die kataphoretische Wanderungsgeschwindigkeit suspendierter teilchen. Z. Phys. 25, 49–52 (1924)

    Google Scholar 

  25. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929). doi:10.1021/ja01385a012

    Article  CAS  Google Scholar 

  26. Falkenhagen, H.: Theorie der Elektrolyte. S. Hirzel, Leipzig (1971)

    Google Scholar 

  27. Falkenhagen, H.: Quantitative limiting law of the viscosity of strong binary electrolytes. Z. Phys. 32, 745–764 (1931)

    CAS  Google Scholar 

  28. Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous solutions of NaCl and KCl at high pressures. Int. J. Thermophys. 15, 401–413 (1994). doi:10.1007/BF01563705

    Article  CAS  Google Scholar 

  29. Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous KI and KBr solutions at high temperatures and high pressures. J. Solution Chem. 30, 223–235 (2001). doi:10.1023/A:1005223415475

    Article  CAS  Google Scholar 

  30. Abdulagatov, I.M., Magomedov, U.B.: High pressure thermal conductivity of H2O+KI and H2O+KBr. In: Proc. of the 14th European Conference on Thermophysical Properties. Lyon–Villeurbanne, France (1996)

  31. Abdulagatov, I.M., Azizov, N.D.: Thermal conductivity and viscosity of the aqueous K2SO4 solutions at temperatures from 298 to 573 K and at pressures up to 30 MPa. Int. J. Thermophys. 26, 593–635 (2005). doi:10.1007/s10765-005-5567-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhmedova-Azizova, L.A., Abdulagatov, I.M. Thermal Conductivity of Aqueous K2CO3 Solutions at High Temperatures. J Solution Chem 38, 1015–1028 (2009). https://doi.org/10.1007/s10953-009-9428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9428-x

Keywords

Navigation