Skip to main content
Log in

Explosivity Conditions of Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This paper focuses on the conditions for explosive boiling and gas exsolution of aqueous solutions from a thermodynamic point of view. Indeed, the kinetic nature of these processes, hence their explosivity, can be assessed by considering their relation with the spinodal curve of these liquids. First, the concepts of mechanical and diffusion spinodals are briefly described, which allows us to introduce the notions of superspinodal (explosive) transformations and subspinodal (non-explosive) ones. Then, a quantitative study of spinodal curves is attempted for the binary systems H2O–CO2 and H2O–NaCl using equations of state having a strong physical basis. It is shown that dissolved gaseous components and electrolytes have an antagonist effect: dissolved volatiles (like CO2) tend to shift the superspinodal region towards lower temperatures, whereas electrolytes (like NaCl) tend to extend the metastable field towards higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thiéry, R., Mercury, L.: Explosive properties of water in volcanic and hydrothermal systems. J. Geophys. Res. (2009). doi:10.1029/2008JB005742

    Google Scholar 

  2. Debenedetti, P.: Metastable Liquids. Princeton University Press, Princeton (1996)

    Google Scholar 

  3. Lasaga, A.: Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton (1998)

    Google Scholar 

  4. Rowlinson, J., Swinton, F.: Liquid and Liquid Mixtures, 3rd edn. Butterworth Scientific, London (1982)

    Google Scholar 

  5. Imre, A., Kraska, T.: Stability limits in binary fluid mixtures. J. Chem. Phys. 122, 1–8 (2005)

    Article  Google Scholar 

  6. El Mekki, M., Ramboz, C., Perdereau, L., Shmulovich, K.I., Mercury, L.: Lifetime of superheated water in a micrometric fluid inclusion. In: Rzoska, S.J., Mazur, V. (eds.) Metastable Systems under Pressure: Platform for New Technological and Environmental Applications. Springer, Dordrecht (2009)

    Google Scholar 

  7. Wagner, W., Pruss, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)

    Article  CAS  Google Scholar 

  8. Kiselev, S.: Kinetic boundary of metastable states in superheated and stretched liquids. Physica A 269, 252–268 (1999)

    Article  CAS  Google Scholar 

  9. Kiselev, S., Ely, J.: Curvature effect on the physical boundary of metastable states in liquids. Physica A 299, 357–370 (2001)

    Article  CAS  Google Scholar 

  10. Debenedetti, P.: Phase separation by nucleation and by spinodal decomposition: fundamentals. In: Kiran, E., Debenedetti, P., Peters, C.C. (eds.) Supercritical Fluids: Fundamentals for Application, pp. 123–166. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  11. Abbasi, T., Abbasi, S.: The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. J. Hazard. Mater. 141, 480–519 (2007)

    Google Scholar 

  12. Casal, J., Salla, J.: Using liquid superheating for a quick estimation of overpressure in BLEVEs and similar explosions. J. Hazard. Mater. A 137, 1321–1327 (2006)

    Article  CAS  Google Scholar 

  13. Planas-Cuchi, E., Salla, J., Casal, J.: Calculating overpressure from BLEVE explosions. J. Loss Prevent. Process Ind. 17, 431–436 (2004)

    Article  Google Scholar 

  14. Pinhasi, G., Ullmann, A., Dayan, A.: 1D plane numerical model for boiling liquid vapor explosion (BLEVE). Int. J. Heat Mass Transf. 50, 4780–4795 (2007)

    Article  CAS  Google Scholar 

  15. Salla, J., Demichela, M., Casal, J.: BLEVE: a new approach to the superheat limit temperature. J. Loss Prevent. Process Ind. 19, 690–700 (2006)

    Article  Google Scholar 

  16. Reid, R.C.: Possible mechanism for pressurized-liquid tank explosions or BLEVE’s. Science 203, 1263–1265 (1979)

    Article  CAS  Google Scholar 

  17. Reid, R.C.: Superheated liquids. Am. Sci. 64, 146–156 (1976)

    CAS  Google Scholar 

  18. Reid, R.C.: Rapid phase transitions from liquid to vapor. Adv. Chem. Eng. 12, 105–208 (1983)

    Article  CAS  Google Scholar 

  19. Corradini, M.L., Kim, B.J., Oh, M.D.: Vapor explosions in light water reactors: a review of theory and modeling. Prog. Nucl. Energy 22(1), 1–117 (1988)

    Article  CAS  Google Scholar 

  20. Perfetti, E., Thiéry, R., Dubessy, J.: Equation of state taking into account dipolar interactions and association by hydrogen bonding. I—Application to pure water and hydrogen sulfide. Chem. Geol. 251, 58–66 (2008)

    Article  CAS  Google Scholar 

  21. Perfetti, E., Thiéry, R., Dubessy, J.: Equation of state taking into account dipolar interactions and association by hydrogen bonding: II—Modelling liquid-vapour equilibria in the H2O–H2S, H2O–CH4 and H2O–CO2 systems. Chem. Geol. 251, 50–57 (2008)

    Article  CAS  Google Scholar 

  22. Daridon, J., Lagourette, B., Saint-Guirons, H., Xans, P.: A cubic equation of state model for phase equilibrium calculation of alkane + carbon dioxide + water using a group contribution k ij . Fluid Phase Equil. 91, 31–54 (1993)

    Article  CAS  Google Scholar 

  23. Thiéry, R.: Thermodynamic modeling of aqueous-CH4 bearing fluid inclusions trapped in hydrocarbon-rich environments. Chem. Geol. 227, 154–164 (2006)

    Article  Google Scholar 

  24. Stryjek, R., Vera, J.: An improved Peng-Robinson equation of state with new mixing rules for strongly non ideal mixtures. Can. J. Chem. Eng. 64, 334–340 (1986)

    Article  CAS  Google Scholar 

  25. Stryjek, R., Vera, J.: PRSV2: a cubic equation of state for accurate vapour-liquid equilibrium calculations. Can. J. Chem. Eng. 64, 820–826 (1986)

    Article  CAS  Google Scholar 

  26. Stryjek, R., Vera, J.: Vapour-liquid equilibria of hydrochloric acid and solutions with the PRSV equation of state. Fluid Phase Equil. 25, 279–290 (1986)

    Article  CAS  Google Scholar 

  27. Duan, Z., Hu, J.: A new cubic equation of state and its applications to the modeling of vapor-liquid equilibria and volumetric properties of natural fluids. Geochim. Cosmochim. Acta 14, 2997–3009 (2004)

    Article  Google Scholar 

  28. Thiéry, R.: A new object-oriented library for calculating high-order multivariable derivatives and thermodynamic properties of fluids with equations of state. Comput. Geosci. 22, 801–815 (1996)

    Article  Google Scholar 

  29. Duan, Z., Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 193, 257–271 (2003)

    Article  CAS  Google Scholar 

  30. Asselineau, L., Bogdanic, G., Vidal, J.: A versatile algorithm for calculating vapour-liquid equilibria. Fluid Phase Equil. 3, 273–290 (1979)

    Article  CAS  Google Scholar 

  31. Mercury, L., Azaroual, M., Zeyen, H., Tardy, Y.: Thermodynamic properties of solutions in metastable systems under negative or positive pressures. Geochim. Cosmochim. Acta 67, 1769–1785 (2003)

    Article  CAS  Google Scholar 

  32. Mercury, L., Pinti, D.L., Zeyen, H.: The effect of the negative pressure of capillary water on atmospheric noble gas solubility in ground water and palaeotemperature reconstruction. Earth Planet. Sci. Lett. 223, 147–161 (2004)

    Article  CAS  Google Scholar 

  33. Pettenati, M., Mercury, L., Azaroual, M.: Capillary geochemistry in non-saturated zone of soils. Water content and geochemical signatures. Appl. Geochem. 23, 3799–3818 (2008)

    Article  CAS  Google Scholar 

  34. Anderko, A., Pitzer, K.: Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl–H2O above 573 K. Geochim. Cosmochim. Acta 57, 1657–1680 (1993)

    Article  CAS  Google Scholar 

  35. Boublik, T.: Hard sphere equation of state. J. Chem. Phys. 53, 471–472 (1970)

    Article  CAS  Google Scholar 

  36. Stell, G., Rasaiah, J., Narang, H.: Thermodynamic perturbation theory for simple polar fluids. J. Mol. Phys. 23, 393–406 (1972)

    Article  CAS  Google Scholar 

  37. Bischoff, J.: Densities of liquids and vapors in boiling NaCl–H2O solutions: a PVTX summary from 300 to 500 °C. Am. J. Sci. 291, 369–381 (1991)

    Google Scholar 

  38. Shmulovich, K., Mercury, L., Thiéry, R., Ramboz, C., El Mekki, M.: Superheating ability of water and aqueous solutions. Experiments and geochemical consequences. Geochim. Cosmochim. Acta 73(9), 2457–2470 (2009)

    Article  CAS  Google Scholar 

  39. Orphanidis, E.: Conditions physico-chimiques de précipitation de la barytine épigénétique dans le bassin sud-ouest de la fosse Atlantis II (Mer Rouge): données des inclusions fluides et approche expérimentale. Implications pour le dépôt des métaux de base et métaux précieux. Thèse Université d’Orléans, 180 pp. (1995)

  40. Rice, A.: Rollover in volcanic crater lakes: a possible cause for Lake Nyos type disasters. J. Volcan. Geotherm. Res. 97, 233–239 (2000)

    Article  CAS  Google Scholar 

  41. Schuiling, R.D., Cathcart, R.B., Badescu, V.: Asteroid impact in the Black Sea; a black scenario. In: Rzoska, S.J., Mazur, V. (eds.) Soft Matter under Exogenic Impacts. NATO Science Series II, vol. 242, pp. 2–8. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  42. Tödheide, K., Franck, E.U.: Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid-Wasser bis zu Drucken von 3500 bar. Z. Phys. Chem. 37, 387–401 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thiéry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiéry, R., Mercury, L. Explosivity Conditions of Aqueous Solutions. J Solution Chem 38, 893–905 (2009). https://doi.org/10.1007/s10953-009-9417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9417-0

Keywords

Navigation