Abstract
This paper focuses on the conditions for explosive boiling and gas exsolution of aqueous solutions from a thermodynamic point of view. Indeed, the kinetic nature of these processes, hence their explosivity, can be assessed by considering their relation with the spinodal curve of these liquids. First, the concepts of mechanical and diffusion spinodals are briefly described, which allows us to introduce the notions of superspinodal (explosive) transformations and subspinodal (non-explosive) ones. Then, a quantitative study of spinodal curves is attempted for the binary systems H2O–CO2 and H2O–NaCl using equations of state having a strong physical basis. It is shown that dissolved gaseous components and electrolytes have an antagonist effect: dissolved volatiles (like CO2) tend to shift the superspinodal region towards lower temperatures, whereas electrolytes (like NaCl) tend to extend the metastable field towards higher temperatures.
Similar content being viewed by others
References
Thiéry, R., Mercury, L.: Explosive properties of water in volcanic and hydrothermal systems. J. Geophys. Res. (2009). doi:10.1029/2008JB005742
Debenedetti, P.: Metastable Liquids. Princeton University Press, Princeton (1996)
Lasaga, A.: Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton (1998)
Rowlinson, J., Swinton, F.: Liquid and Liquid Mixtures, 3rd edn. Butterworth Scientific, London (1982)
Imre, A., Kraska, T.: Stability limits in binary fluid mixtures. J. Chem. Phys. 122, 1–8 (2005)
El Mekki, M., Ramboz, C., Perdereau, L., Shmulovich, K.I., Mercury, L.: Lifetime of superheated water in a micrometric fluid inclusion. In: Rzoska, S.J., Mazur, V. (eds.) Metastable Systems under Pressure: Platform for New Technological and Environmental Applications. Springer, Dordrecht (2009)
Wagner, W., Pruss, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)
Kiselev, S.: Kinetic boundary of metastable states in superheated and stretched liquids. Physica A 269, 252–268 (1999)
Kiselev, S., Ely, J.: Curvature effect on the physical boundary of metastable states in liquids. Physica A 299, 357–370 (2001)
Debenedetti, P.: Phase separation by nucleation and by spinodal decomposition: fundamentals. In: Kiran, E., Debenedetti, P., Peters, C.C. (eds.) Supercritical Fluids: Fundamentals for Application, pp. 123–166. Kluwer Academic, Dordrecht (2000)
Abbasi, T., Abbasi, S.: The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. J. Hazard. Mater. 141, 480–519 (2007)
Casal, J., Salla, J.: Using liquid superheating for a quick estimation of overpressure in BLEVEs and similar explosions. J. Hazard. Mater. A 137, 1321–1327 (2006)
Planas-Cuchi, E., Salla, J., Casal, J.: Calculating overpressure from BLEVE explosions. J. Loss Prevent. Process Ind. 17, 431–436 (2004)
Pinhasi, G., Ullmann, A., Dayan, A.: 1D plane numerical model for boiling liquid vapor explosion (BLEVE). Int. J. Heat Mass Transf. 50, 4780–4795 (2007)
Salla, J., Demichela, M., Casal, J.: BLEVE: a new approach to the superheat limit temperature. J. Loss Prevent. Process Ind. 19, 690–700 (2006)
Reid, R.C.: Possible mechanism for pressurized-liquid tank explosions or BLEVE’s. Science 203, 1263–1265 (1979)
Reid, R.C.: Superheated liquids. Am. Sci. 64, 146–156 (1976)
Reid, R.C.: Rapid phase transitions from liquid to vapor. Adv. Chem. Eng. 12, 105–208 (1983)
Corradini, M.L., Kim, B.J., Oh, M.D.: Vapor explosions in light water reactors: a review of theory and modeling. Prog. Nucl. Energy 22(1), 1–117 (1988)
Perfetti, E., Thiéry, R., Dubessy, J.: Equation of state taking into account dipolar interactions and association by hydrogen bonding. I—Application to pure water and hydrogen sulfide. Chem. Geol. 251, 58–66 (2008)
Perfetti, E., Thiéry, R., Dubessy, J.: Equation of state taking into account dipolar interactions and association by hydrogen bonding: II—Modelling liquid-vapour equilibria in the H2O–H2S, H2O–CH4 and H2O–CO2 systems. Chem. Geol. 251, 50–57 (2008)
Daridon, J., Lagourette, B., Saint-Guirons, H., Xans, P.: A cubic equation of state model for phase equilibrium calculation of alkane + carbon dioxide + water using a group contribution k ij . Fluid Phase Equil. 91, 31–54 (1993)
Thiéry, R.: Thermodynamic modeling of aqueous-CH4 bearing fluid inclusions trapped in hydrocarbon-rich environments. Chem. Geol. 227, 154–164 (2006)
Stryjek, R., Vera, J.: An improved Peng-Robinson equation of state with new mixing rules for strongly non ideal mixtures. Can. J. Chem. Eng. 64, 334–340 (1986)
Stryjek, R., Vera, J.: PRSV2: a cubic equation of state for accurate vapour-liquid equilibrium calculations. Can. J. Chem. Eng. 64, 820–826 (1986)
Stryjek, R., Vera, J.: Vapour-liquid equilibria of hydrochloric acid and solutions with the PRSV equation of state. Fluid Phase Equil. 25, 279–290 (1986)
Duan, Z., Hu, J.: A new cubic equation of state and its applications to the modeling of vapor-liquid equilibria and volumetric properties of natural fluids. Geochim. Cosmochim. Acta 14, 2997–3009 (2004)
Thiéry, R.: A new object-oriented library for calculating high-order multivariable derivatives and thermodynamic properties of fluids with equations of state. Comput. Geosci. 22, 801–815 (1996)
Duan, Z., Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 193, 257–271 (2003)
Asselineau, L., Bogdanic, G., Vidal, J.: A versatile algorithm for calculating vapour-liquid equilibria. Fluid Phase Equil. 3, 273–290 (1979)
Mercury, L., Azaroual, M., Zeyen, H., Tardy, Y.: Thermodynamic properties of solutions in metastable systems under negative or positive pressures. Geochim. Cosmochim. Acta 67, 1769–1785 (2003)
Mercury, L., Pinti, D.L., Zeyen, H.: The effect of the negative pressure of capillary water on atmospheric noble gas solubility in ground water and palaeotemperature reconstruction. Earth Planet. Sci. Lett. 223, 147–161 (2004)
Pettenati, M., Mercury, L., Azaroual, M.: Capillary geochemistry in non-saturated zone of soils. Water content and geochemical signatures. Appl. Geochem. 23, 3799–3818 (2008)
Anderko, A., Pitzer, K.: Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl–H2O above 573 K. Geochim. Cosmochim. Acta 57, 1657–1680 (1993)
Boublik, T.: Hard sphere equation of state. J. Chem. Phys. 53, 471–472 (1970)
Stell, G., Rasaiah, J., Narang, H.: Thermodynamic perturbation theory for simple polar fluids. J. Mol. Phys. 23, 393–406 (1972)
Bischoff, J.: Densities of liquids and vapors in boiling NaCl–H2O solutions: a PVTX summary from 300 to 500 °C. Am. J. Sci. 291, 369–381 (1991)
Shmulovich, K., Mercury, L., Thiéry, R., Ramboz, C., El Mekki, M.: Superheating ability of water and aqueous solutions. Experiments and geochemical consequences. Geochim. Cosmochim. Acta 73(9), 2457–2470 (2009)
Orphanidis, E.: Conditions physico-chimiques de précipitation de la barytine épigénétique dans le bassin sud-ouest de la fosse Atlantis II (Mer Rouge): données des inclusions fluides et approche expérimentale. Implications pour le dépôt des métaux de base et métaux précieux. Thèse Université d’Orléans, 180 pp. (1995)
Rice, A.: Rollover in volcanic crater lakes: a possible cause for Lake Nyos type disasters. J. Volcan. Geotherm. Res. 97, 233–239 (2000)
Schuiling, R.D., Cathcart, R.B., Badescu, V.: Asteroid impact in the Black Sea; a black scenario. In: Rzoska, S.J., Mazur, V. (eds.) Soft Matter under Exogenic Impacts. NATO Science Series II, vol. 242, pp. 2–8. Springer, Dordrecht (2007)
Tödheide, K., Franck, E.U.: Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid-Wasser bis zu Drucken von 3500 bar. Z. Phys. Chem. 37, 387–401 (1963)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Thiéry, R., Mercury, L. Explosivity Conditions of Aqueous Solutions. J Solution Chem 38, 893–905 (2009). https://doi.org/10.1007/s10953-009-9417-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-009-9417-0