Abstract
Density measurements were made for binary aqueous solutions of polyethylene glycol at seven temperatures: 283.15, 288.15, 293.15, 298.15, 303.15, 308.15, and 313.15 K. Polyethylene glycol samples with nominal average molar masses of 3000 g⋅mol−1 (PEG 3000), 6000 g⋅mol−1 (PEG 6000), 10000 g⋅mol−1 (PEG 10000) and 20000 g⋅mol−1 (PEG 20000) were used. These results were used to determine the specific volumes of solutions with solute-to-solvent mass ratios (mass of the solute/mass of the solvent) in the range 0.0546 to 1.4932 for PEG 3000, from 0.0553 to 1.4986 for PEG 6000, from 0.0552 to 1.2241 for PEG 10000, and from 0.0530 to 1.2264 for PEG 20000. The differences between the specific volume of a solution and the specific volume of the pure solvent, at a given temperature, were represented by a virial-type equation in terms of solute concentration. The first-order coefficient of the expansion is the partial specific volume of the solute at infinite dilution. The higher-order coefficients are related to the contribution of pairs, triplets, and higher-order solute aggregates, according to the Constant-Pressure Solution Theory. The functional dependence of the virial coefficients upon temperature is discussed in terms of solute-solute and solute-solvent interactions. The effect of the PEG molar mass on the partial specific volume of solute at infinite dilution, as well as the contributions of pairs of solute molecules to the solution volume, are also investigated. The apparent specific volume, apparent specific expansibility, apparent specific expansibility at infinite dilution and virial coefficients of the apparent specific expansibility are also presented.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Saeki, S., Kuwahara, N., Nakata, M., Kaneko, M.: Upper and lower critical solution temperatures in poly(ethylene glycol) solutions. Polymer (Guildf.) 17, 685–689 (1976). doi:10.1016/0032-3861(76)90208-1
Albertsson, P.-Å.: Partition of Cell Particles and Macromolecules, 3rd edn. Wiley-Interscience, New York (1986)
Venohr, H., Fraaije, V., Strunk, H., Borchard, W.: Static and dynamic light scattering from aqueous poly(ethylene oxide) solutions. Eur. Polym. J. 34, 723–732 (1998). doi:10.1016/S0014-3057(97)00159-6
Dormidontova, E.E.: Role of competitive PEO-water and water-water hydrogen bonding in aqueous solution PEO behavior. Macromolecules 35, 987–1001 (2002). doi:10.1021/ma010804e
Franks, F., Pedley, M., Reid, D.S.: Solute interactions in dilute aqueous solutions. Part. 1 — Microcalorimetric study of the hydrophobic interaction. J. Chem. Soc., Faraday Trans. I 72, 359–367 (1976). doi:10.1039/f19767200359
Kirinčič, S., Klofutar, C.: A volumetric study of aqueous solutions of poly(ethylene glycol)s at 298.15 K. Fluid Phase Equil. 149, 233–247 (1998). doi:10.1016/S0378-3812(98)00369-0
Cruz, R.C., Martins, R.J., Cardoso, M.J.E.M., Barcia, O.E.: Volumetric study of aqueous solutions of poly(ethylene glycol) from 283.15 to 313.15 K and at 0.1 MPa. J. Appl. Polym. Sci. 91, 2685–2689 (2004). doi:10.1002/app.13451
Rudan-Tasic, D., Klofutar, C.: Apparent molar volume and apparent molar refraction of mono-, di-, tri-, and tetra(oxyethylene) glycol in aqueous, 1,4-dioxane, and benzene solutions at 298.15 K. Monatsh. Chem. 134, 1185–1193 (2003). doi:10.1007/s00706-003-0052-y
Rudan-Tasic, D., Klofutar, C.: Apparent specific volume and apparent specific refraction of some poly(oxyethylene) glycols in 1,4-dioxane and benzene solutions at 298.15 K. Monatsh. Chem. 135, 1209–1224 (2004). doi:10.1007/s00706-004-0211-9
Leslie, T.E., Lilley, T.H.: Aqueous-solutions containing amino-acids and peptides. 20. Volumetric behavior of some terminally substituted amino-acids and peptides at 298.15 K. Biopolymers 24, 695–710 (1985). doi:10.1002/bip.360240409
Tawfik, W.Y., Teja, A.S.: The densities of polyethylene glycols. Chem. Eng. Sci. 44, 921–923 (1989). doi:10.1016/0009-2509(89)85265-0
Hill, T.L.: Theory of solutions. I. J. Am. Chem. Soc. 79, 4885–4890 (1957). doi:10.1021/ja01575a016
Hill, T.L.: Theory of solutions. II. Osmotic pressure virial expansion and light scattering in two component solutions. J. Chem. Phys. 30, 93–97 (1959). doi:10.1063/1.1729949
Hill, T.L.: Thermodynamics for Chemists and Biologists. Addison-Wesley, Boston (1968)
Hill, T.L.: An Introduction to Statistical Thermodynamics. Dover, New York (1986)
Wurzburger, S., Sartorio, R., Guarino, G., Nisi, M.: Volumetric properties of aqueous solutions of polyols between 0.5 and 25 °C. J. Chem. Soc., Faraday Trans. I 84, 2279–2287 (1988). doi:10.1039/f19888402279
Lide, D.R.: Handbook of Chemistry and Physics, 76th edn. CRC, Boca Raton (1995)
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)
Millero, F.J., Ward, G.K., Chetirkin, P.: Partial specific volume, expansibility, compressibility, and heat capacity of aqueous lysozyme solutions. J. Biol. Chem. 13, 4001–4004 (1976)
Shekaari, H., Mansoori, Y., Sadeghi, R.: Density, speed of sound, and electrical conductance of ionic liquid 1-hexyl-3-methyl-imidazolium bromide in water at different temperatures. J. Chem. Thermodyn. 40, 852–859 (2008). doi:10.1016/j.jct.2008.01.003
Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2001)
Flory, P.J.: Principles of Polymer Chemistry, 5th impression. Cornell University Press, Ithaca (1966)
Sarazin, D., Francois, J.: Apparent specific volumes of polymers in dilute solutions. Polymer (Guildf.) 24, 547–552 (1983). doi:10.1016/0032-3861(83)90103-9
Savage, J.J., Wood, R.H.: Enthalpy of dilution of aqueous mixtures of amides, sugars, urea, ethylene glycol, and pentaerythritol at 25 °C: Enthalpy of interaction of the hydrocarbon, amide, and hydroxyl functional groups in dilute aqueous solutions. J. Solution Chem. 5, 733–750 (1976). doi:10.1007/BF00643457
Jolicoeur, C., Lacroix, G.: Thermodynamic properties of aqueous organic solutes in relation to their structure. Part III. Apparent molal volumes and heat capacities of low molar mass alcohols and polyols at 25 °C. Can. J. Chem. 54, 624–630 (1976). doi:10.1139/v76-089
Perron, G., Desnoyers, J.E.: Heat capacities and volumes of interaction between mixtures of alcohols in water at 298.15 K. J. Chem. Thermodyn. 13, 1105–1121 (1981). doi:10.1016/0021-9614(81)90009-4
Hepler, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969). doi:10.1139/v69-762
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cruz, R.d.C., Martins, R.J., Cardoso, M.J.E.d.M. et al. Volumetric Study of Aqueous Solutions of Polyethylene Glycol as a Function of the Polymer Molar Mass in the Temperature Range 283.15 to 313.15 K and 0.1 MPa. J Solution Chem 38, 957–981 (2009). https://doi.org/10.1007/s10953-009-9388-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-009-9388-1