Skip to main content
Log in

Hydrogen-Bonding Interaction in a Complex of Amino Acid with N,N-Dimethylformamide Studied by DFT Calculations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Theoretical studies on hydrogen-bonded complexes between amino acids (glycine, alanine and leucine) and N,N-dimethylformamide (DMF) in gas phase have been carried out using density functional theory (DFT) and ab initio calculations at the B3LYP/6-311++G** and MP2/6-311++G** theory levels. The structures, binding energy, stretching frequency and bond characteristics of the mentioned complexes were calculated. The NH2 and COOH groups of amino acids form different types of hydrogen bonds with the DMF molecule, as well as alkyl side chains. High binding energy suggests multiple hydrogen bonds present in one complex. The nearly linear OH⋅⋅⋅O and NH⋅⋅⋅O contacts are stronger than a conventional hydrogen bond interaction with their H⋅⋅⋅O separation between 1.74 and 2.14 Å. The weaker CH⋅⋅⋅O H-bond is also discussed as being a crucial interaction in biological systems involving amino acids. The formation of this interaction results in a blue shift in the CH stretching frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adcock, J.L., Zhang, H.: Polarized C-H groups as novel hydrogen-bond donors in hydryl-F-alkyl esters: unequivocal examples for the “Pinchas Effect”. J. Org. Chem. 60, 1999–2002 (1995)

    Article  CAS  Google Scholar 

  2. Angelo, V., Jack, D.D.: Lone-pair directionality in hydrogen-bond potential functions for molecular mechanics calculations: the inhibition of human carbonic anhydrase II by sulfonamides. J. Am. Chem. Soc. 107, 7653–7658 (1985)

    Article  Google Scholar 

  3. Bader, R.F.W.: Atom in Molecules: A Quantum Theory, International Series of Monographs in Chemistry. Oxford University Press, Oxford (1990)

    Google Scholar 

  4. Bader, R.F.W.: A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 102, 7314–7323 (1998)

    Article  CAS  Google Scholar 

  5. Biegler-Konig, F., Bader, R.F.: AIM 2000, Version 2 (2002)

  6. Boys, S.F., Bernardi, F.: Calculations of small molecular interactions by differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  7. Clark, T., Chandrasekhar, J., Spitznagel, G.W., Schleyer, P.V.R.: Efficient diffuse function-augmented basis sets for anion calculations. III: The 3-21+G basis set for first-row elements, Li-F. J. Comp. Chem. 4, 294–301 (1983)

    Article  CAS  Google Scholar 

  8. Dan, T.M., Kwangho, N., Gao, J.A.: Transition state stabilization and α-amino carbon acidity in alanine racemase. J. Am. Chem. Soc. 128, 8114–8115 (2006)

    Article  Google Scholar 

  9. Frisch, M.J., Pople, J.A., Binkley, J.S.: Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984)

    Article  CAS  Google Scholar 

  10. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian03. Gaussian. Inc., Pittsburgh (2003)

    Google Scholar 

  11. Fuqiang, B., Kathryn, N.R., James, W.G., Russell, J.B.: Recent applications of density functional theory calculations to biomolecules. Theor. Chem. Acc. 108, 1–11 (2002)

    Google Scholar 

  12. Hobza, P., Spirko, V., Havlas, Z., Buchhold, K., Reimann, B., Barth, H.D., Brutschy, B.: Anti- hydrogen bond between chloroform and fluorobenzene. Chem. Phys. Lett. 299, 180–186 (1999)

    Article  CAS  Google Scholar 

  13. Jordan, R.Q., Steven, C.Z., Janet, E.D.B., Isaiah, S.: Does the A⋅T or G⋅C base-pair possess enhanced stability? Quantifying the effects of CH⋅⋅⋅O interactions and secondary interactions on base-pair stability using a phenomenological analysis and ab initio calculations. J. Am. Chem. Soc. 129, 934–941 (2007)

    Article  Google Scholar 

  14. Loos, P.F., Assfeld, X., Rivail, J.L.: Intramolecular interactions and cis peptidic bonds. Theor. Chem. Acc. 118, 165–171 (2007)

    Article  CAS  Google Scholar 

  15. Magalhaes, A.L., Madail, S.R.R.S., Ramos, M.J.: Prediction of the Raman spectrum of the aqueous formate anion by a combined density functional theory and self-consistent-reaction-field study. Theor. Chem. Acc. 105, 68–76 (2000)

    CAS  Google Scholar 

  16. Mizuno, K., Ochi, T., Shindo, Y.: Hydrophobic hydration of acetone probed by nuclear magnetic resonance and infrared: Evidence for the interaction C–H⋅⋅⋅OH2. J. Chem. Phys. 109, 9502–9507 (1998)

    Article  CAS  Google Scholar 

  17. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford Science, Oxford (1989)

    Google Scholar 

  18. Perutz, M.F.: The role of aromatic rings as hydrogen-bond acceptors in molecular recognition. Phil. Trans. R. Soc. A 345, 105–112 (1993)

    Article  CAS  Google Scholar 

  19. Pinchas, S.: Infrared absorption of aldehydic C-H group. Anal. Chem. 29, 334–339 (1957)

    Article  CAS  Google Scholar 

  20. Pinchas, S.: Intramolecular hydrogen bonding in o-nitrobenzaldehyde and related compounds. J. Phys. Chem. 67, 1862–1865 (1963)

    Article  CAS  Google Scholar 

  21. Robert, P.A., Maria, B., Sarah, L.P.: The orientation of N–H⋅⋅⋅O=C and N–H⋅⋅⋅N hydrogen bonds in biological systems: how good is a point charge as a model for a hydrogen bonding atom? J. Comput. -Aided Mol. Des. 11, 479–490 (1997)

    Article  Google Scholar 

  22. Satonaka, H., Abe, K., Hirota, M.: NMR spectroscopic study of the conformational preference of methoxycarbonyl and methyl substituted thiophenecarbaldehydes. Possibility of a hydrogen-bond-like interaction between formyl C–H and the ester carbonyl group. Bull. Chem. Soc. Jpn. 61, 2031–2037 (1988)

    Article  CAS  Google Scholar 

  23. Sijpkes, A.H., Staneke, P.O., Somsen, G.: Enthalpies of interaction of some N-acetyl amides of L-serine. L-threonine and L-hydroxyproline dissolved in N,N-dimethylformamide at 298.15 K. Thermochim. Acta 167, 65–72 (1990)

    Article  CAS  Google Scholar 

  24. Sammes, M.P., Harlow, R.L.: Intramolecular hydrogen bonds involving polar carbon–hydrogen bonds: infrared and 1H nuclear magnetic resonance spectra of some cyanomethyl and benzyl sulphones. J. Chem. Soc. Perkin. Trans. II, 1130–1135 (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, XH., Wang, HJ. Hydrogen-Bonding Interaction in a Complex of Amino Acid with N,N-Dimethylformamide Studied by DFT Calculations. J Solution Chem 38, 303–313 (2009). https://doi.org/10.1007/s10953-009-9368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9368-5

Keywords

Navigation