Skip to main content
Log in

Reverse Schreinemakers Method for Experimental Analysis of Mixed-Solvent Electrolyte Systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A method based on Schreinemakers’s tie-line theory of 1893 is derived for determining the composition and phase amounts in solubility experiments for multi-solvent electrolyte systems. The method uses the lever rule in reverse compared to Schreinemakers’s wet residue method, and is therefore called the reverse Schreinemakers (RS) method. The method is based on simple mass balance principles similar to the wet residues method. It allows for accurate determination of the mixed-solvent phase composition even though part of the solvent may precipitate as complexes between solvent and salt. Discrepancies from determining the composition of salt mixtures by pH titration are discussed, and the derived method significantly improves the obtained result from titration. Furthermore, the method reduces the required experimental work needed for analysis of phase composition. The method is applicable to multi-solvent systems and may be used for the determination of solid-phase compositions, similar to Schreinemakers’s original “rest” method. An example calculation is presented for the Na2CO3-NaHCO3-MEG-H2O system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schreinemakers, F.A.H.: Graphical deductions from the solution isotherms of a double salt and its components. Z. Phys. Chem. 11, 75–109 (1893)

    Google Scholar 

  2. Schreinemakers, F.A.H., van Dorp, W.A., Cocheret, D.H., Filippo, H., Waal, A.J.C.: Quaternary equilibrium systems. Z. Phys. Chem. 59, 641–669 (1907)

    Google Scholar 

  3. Schreinemakers, F.A.H.: Gleichgewichte in quaternaren Systemen. Z. Phys. Chem. 65, 553–585 (1909)

    CAS  Google Scholar 

  4. Browne, A.W.: Synthetic analysis in ternary systems. J. Phys. Chem. 6, 287–312 (1902)

    Article  CAS  Google Scholar 

  5. Cameron, F.K., Bell, J.M., Robinson, W.O.: The solubility of certain salts present in alkali soils. J. Phys. Chem. 11, 396–420 (1907)

    Article  CAS  Google Scholar 

  6. Lorimer, J.W.: The least-squares triangle: a new method for evaluation of solid phase compositions from solubility measurements. Can. J. Chem. 59, 3076–3083 (1981)

    Article  CAS  Google Scholar 

  7. Bancroft, W.D.: Synthetic analysis of solid phases. J. Phys. Chem. 6, 178–183 (1902)

    Article  CAS  Google Scholar 

  8. Bancroft, W.D.: The phase rule. J. Phys. Chem., Ithaca, NY (1897)

  9. Schreinemakers, F.A.H.: Ternary equilibria. Chem. Weekbl. 1, 329–337 (1904)

    Google Scholar 

  10. Purdon, F.F., Slater, V.W.: Aqueous Solutions and the Phase Diagram. Arnold, London (1946)

    Google Scholar 

  11. Ricci, J.E.: The Phase Rule and Heterogeneous Equilibrium. Dover, New York (1966)

    Google Scholar 

  12. Schreinemakers, F.A.H.: Alkali chromates. Z. Phys. Chem. 55, 71–98 (1906)

    CAS  Google Scholar 

  13. Lopatkin, Ya.M.: Determination of the solid phase in equilibrium systems. Trans. Kirov Inst. Chem. Tech. Kazan 7, 7–30 (1938)

    Google Scholar 

  14. Schreinemakers, F.A.H.: Quaternary systems. A few deductions. Z. Phys. Chem. 66, 699–704 (1909)

    CAS  Google Scholar 

  15. Bell, J.M.: The composition of solid phase in a four-component system. J. Phys. Chem. 11, 394–395 (1907)

    Article  Google Scholar 

  16. von Philipsborn, H.: Zur graphischen Behandlung quartenärer Systeme. Neues Jahrb. Min. Geol. Paläont. Beil.-Bd. 57, 973–1012 (1928)

    Google Scholar 

  17. Igelsrud, I., Thompson, T.G.: Equilibria in the saturated solutions of salts occurring in sea water, II: quaternary system MgCl2-CaCl2-KCl-H2O at 0°. J. Am. Chem. Soc. 58, 2003–2009 (1936)

    Article  CAS  Google Scholar 

  18. Perelmann, F.: Extension of the method of Schreinemakers to multi-component systems. Bull. Acad. Sci. URSS, Classe Sci. Math. Nat., Ser. Chim. 379–386 (1936)

  19. von Philipsborn, H.: The general case of the residue method. Fortschr. Mineral. 26, 99–104 (1950)

    Google Scholar 

  20. Ensley, E.K.: Chemical properties of uranium compounds: I. Study of the system UO3-HNO3-H2O by phase rule methods. II. Schreinemaker’s method of wet-residues applied to multi-component systems. III. Chemical and kinetic investigation of the reaction of UO2(NO3)2⋅N2O4⋅H2O with aromatic compounds. Dissertation, University of Colorado, Boulder (1960)

  21. Schott, J.: A mathematical extrapolation for the method of wet residue. J. Chem Eng. Data 6, 324–325 (1961)

    Article  CAS  Google Scholar 

  22. Scholle, S.: Determination of composition of solid phases in quaternary systems of the type “water and three salts with a common ion”. Chem. Zvesti 19(7), 521–529 (1965)

    CAS  Google Scholar 

  23. Lorimer, J.W.: The least-squares intersection of a family of lines and its application to phase equilibria. Can. J. Chem. 60, 1978–1981 (1982)

    Article  CAS  Google Scholar 

  24. Vaserman, L.Z.: Estimation of the quality of experimental data obtained in the study of solubility. Russ. J. Inorg. Chem 30, 258–260 (1985)

    Google Scholar 

  25. Yurchenko, V.K., Dyadin, Yu.A.: Error analysis by determination of compositions of binary compounds in three-component systems by Schreinemakers’ method. 1. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 3, 35–41 (1975)

    Google Scholar 

  26. Yurchenko, V.K., Dyadin, Yu.A.: Error analysis by determination of compositions of binary compounds in three-component systems by Schreinemakers’ method. 2. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 3, 42–45 (1975)

    Google Scholar 

  27. Yurchenko, V.K., Dyadin, Yu.A., Chekhova, G.N.: Treatment of results in the determination of compositions of compounds by Schreinemakers’ method. Mat. Khim. Termodinam., Novosibirsk 158–164 (1980)

  28. Oosterhof, H., Witkamp, G.J., van Rosmalen, G.M.: Some antisolvents for crystallisation of sodium carbonate. Fluid Phase Equilib. 155, 219–227 (1999)

    Article  CAS  Google Scholar 

  29. Fosbøl, P.L.: Carbon dioxide corrosion: modelling and experimental work applied to natural gas pipelines. PhD Thesis, Department of Chemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark (2007)

  30. Gärtner, R.S., Seckler, M.M., Witkamp, G.-J.: Solid phases and their solubilities in the system Na2CO3 + NaHCO3 + ethylene glycol + water from (50 to 90) °C. J. Chem. Eng. Data 49, 116–125 (2004)

    Article  Google Scholar 

  31. Morozova, V.A., Rzhechitskii, E.P.: Solubility in the sodium fluoride-sodium bicarbonate-water, sodium fluoride-sodium sulfate-water, and sodium carbonate–sodium fluoride–water systems at 0 °C. Russ. J. Inorg. Chem. 22, 485–486 (1977)

    Google Scholar 

  32. Ellingboe, J.L., Runnels, J.H.: Solubilities of sodium carbonate and sodium bicarbonate in acetone-water and methanol-water mixtures. J. Chem. Eng. Data 11, 323–324 (1966)

    Article  CAS  Google Scholar 

  33. Sedel’nikov, G.S., Trofimovich, A.A.: The reciprocal system 2K+, 2Na+, 2HCO 3 , CO 2−3 , H2O at 75 °C. Russ. J. Inorg. Chem. 4, 649–652 (1959)

    Google Scholar 

  34. Plyushchev, V.E., Kurtova, L.V.: The Li+, Na+//CO 2−3 , NO 3 -H2O system. Russ. J. Inorg. Chem. 10, 800–803 (1965)

    Google Scholar 

  35. Waldeck, W.F., Lynn, G., Hill, A.E.: Aqueous solubility of salts at high temperatures, I: solubility of sodium carbonate from 50 to 348 °C. J. Am. Chem. Soc. 54, 928–936 (1932)

    Article  CAS  Google Scholar 

  36. Wells, R.C., McAdam, D.J.: Phase relations of the system: sodium carbonate and water. J. Am. Chem. Soc. 29, 721–727 (1907)

    Article  CAS  Google Scholar 

  37. Fedotieff, P.P., Koltunoff, J.: Another form of ammonia-soda process. Z. Anorg. Allg. Chem. 85, 247–260 (1914)

    Google Scholar 

  38. Bogoyavlensky, P.S., Manannikova, A.S.: The NaCl-NaHCO3-H2O system (Carlsbad salt) at 25 and 38 °C. J. Appl. Chem. USSR 28, 225–228 (1955)

    Google Scholar 

  39. Ponizovskii, A.M., Vladimirova, N.M., Gordon-Yanovskii, F.A.: Solubility in the Na-Mg-Cl-HCO3-H2O system at 0 °C with carbon dioxide at 4 and 10 kg/cm2. Russ. J. Inorg. Chem. 5, 1250–1252 (1960)

    Google Scholar 

  40. Sukmanskaya, G.V., Bogoyavlenskii, P.S.: Solubility in the sodium sulphate–sodium bicarbonate–sodium chloride–water system. Russ. J. Inorg. Chem. 5, 468–471 (1960)

    Google Scholar 

  41. Trypuc, M., Kielkowska, U.: Solubility in the NH4HCO3 + NaHCO3 + H2O system. J. Chem. Eng. Data 43, 201–204 (1998)

    Article  CAS  Google Scholar 

  42. Oglesby, N.E.: A study of the system sodium bicarbonate-potassium bicarbonate-water. J. Am. Chem. Soc. 51, 2352–2362 (1929)

    Article  CAS  Google Scholar 

  43. Waldeck, W.F., Lynn, G., Hill, A.E.: Aqueous solubility of salts at high temperatures, II: the ternary system Na2CO3-NaHCO3-H2O from 100–200°. J. Am. Chem. Soc. 56, 43–47 (1934)

    Article  CAS  Google Scholar 

  44. Hill, A.E., Bacon, L.R.: Ternary systems, VI: sodium carbonate, sodium bicarbonate and water. J. Am. Chem. Soc. 49, 2487–2495 (1927)

    Article  CAS  Google Scholar 

  45. Hill, A., Smith, S.: Equilibrium between the carbonates and bicarbonates of sodium and potassium in aqueous solution at 25 °C. J. Am. Chem. Soc. 51, 1626–1636 (1929)

    Article  CAS  Google Scholar 

  46. Hill, A.: Double salt formation among the carbonates and bicarbonates of sodium and potassium. J. Am. Chem. Soc. 52, 3813–3817 (1930)

    Article  CAS  Google Scholar 

  47. Green, S.J., Frattali, F.J.: The system Na2CO3-Na2SO4-NaOH-H2O at 100 °C. J. Am. Chem. Soc. 68, 1789–1794 (1946)

    Article  CAS  Google Scholar 

  48. Itkina, L.S., Chaplygina, N.M.: The solubility isotherm in the 2Li+,2Na+, CO 2−3 , 2OH+ H2O system at 50 °C. Russ. J. Inorg. Chem. 8, 768–772 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip L. Fosbøl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fosbøl, P.L., Thomsen, K. & Stenby, E.H. Reverse Schreinemakers Method for Experimental Analysis of Mixed-Solvent Electrolyte Systems. J Solution Chem 38, 1–14 (2009). https://doi.org/10.1007/s10953-008-9353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9353-4

Keywords

Navigation