Skip to main content
Log in

Effectiveness of Phosphate Groups in Noncovalent Interactions in Binary Adenosine Nucleotides/Phosphoserine Aqueous Systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Adduct formation in binary systems of O-phospho-L-serine (Ser-P) with adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP) and adenosine 5′-triphosphate (ATP), has been investigated. This study was performed in aqueous solutions using a potentiometric method with computer analysis of the data, together with 13C and 31P NMR spectroscopic measurements. The overall stability constants of the adducts and the equilibrium constants for their formation have been determined. Ion-dipole and ion-ion interactions have been established to occur in the identified noncovalent complexes. An analysis of the equilibrium constants of the reaction has allowed the determination of the effectiveness of the phosphate groups and donor atoms of heterocyclic rings for molecular complex formation. The potential reaction centers are the atoms N(1) and N(7) from the purine base, the phosphate group of the nucleotides, and the phosphate, carboxyl and amine groups from phosphorylated serine. Sites for the interactions in the bioligands have been found on the basis of an equilibrium constant study and an analysis of the changes in the signal positions of their NMR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, P.: The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002). doi:10.1038/ncb0502-e127

    Article  CAS  Google Scholar 

  2. Elliot, W.H., Elliot, D.C.: Biochemistry and Molecular Biology, 2nd edn. Oxford University Press, Oxford (2002), p. 296

    Google Scholar 

  3. Yarligana, S., Fuzery, A.K., Ogretir, C., Csizmadia, I.G.: Deciphering the ‘biological Morse-code’: a preliminary ab initio study of phosphoserine. J. Mol. Struct.-Theochem. 666–667, 269–271 (2003). doi:10.1016/j.theochem.2003.08.116

    Article  Google Scholar 

  4. Stryer, L.: Biochemistry. Freeman, New York (1995)

    Google Scholar 

  5. Martin, R.B.: Metal ions binding to nucleoside and nucleotides. In: Xavier, A.V. (ed.) Frontiers in Bioinorganic Chemistry. VCH, Weinheim (1986)

    Google Scholar 

  6. Marzilli, L.G.: Metal complex of nucleic acid derivatives and nucleotides: binding sites and structures. In: Eichhorn, G.L., Marzilli, L.G. (eds.) Metal Ions in Genetic Information Transfer, pp. 47–52. Elsevier/North-Holland, Amsterdam (1981)

    Google Scholar 

  7. Sigel, H.: Complexes of metal ions with various nucleic acids components. In: Berthon, G. (ed.) Handbook of Metal–Ligand Interactions in Biological Fluids, pp. 451–459. Marcel Dekker, New York (1995)

    Google Scholar 

  8. Martin, R.B.: Nucleoside sites for transition metal ion binding. Acc. Chem. Res. 18, 32–38 (1985). doi:10.1021/ar00110a001

    Article  CAS  Google Scholar 

  9. De Castro, B., Pereira, J., Gameiro, P., Lima, J.L.: Multinuclear NMR and potentiometric studies on the interaction of zinc and cadmium with cytidine and glycylglycine. The effect of the anion. J. Inorg. Biochem. 45, 53–64 (1992). doi:10.1016/0162-0134(92)84041-K

    Article  Google Scholar 

  10. Lomozik, L.: Metal Complexes with Polyamines. In: Berthon, G. (ed.) Handbook of Metal-Ligand Interactions in Biological Fluids, vol. I, p. 686. Marcel Dekker, New York (1995)

    Google Scholar 

  11. Gasowska, A., Lomozik, L.: Spectroscopic and potentiometric investigation of the solution structure and stability of Ni(II) and Co(II) complexes with adenosine 5′-monophosphate and 1,12-diamino-4,9-diazadodecane (spermine) or 1,11-diamino-4,8-diazaundecane. Polyhedron 21, 745–751 (2002). doi:10.1016/S0277-5387(02)00849-5

    Article  CAS  Google Scholar 

  12. Irving, M.H., Miles, M.G., Pettit, L.D.: A study of some problems in determining the stoichiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal. Chim. Acta 38, 475–488 (1967). doi:10.1016/S0003-2670(01)80616-4

    Article  CAS  Google Scholar 

  13. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996). doi:10.1016/0039-9140(96)01958-3

    Article  CAS  Google Scholar 

  14. Ingri, N., Kakolowicz, W., Sillen, L.G., Warqvist, B.: High-speed computers as a supplement to graphical methods, V: haltafall, a general program for calculating the composition of equilibrium mixtures. Talanta 14, 1261–1286 (1967). doi:10.1016/0039-9140(67)80203-0

    Article  CAS  Google Scholar 

  15. Lomozik, L., Jaskolski, M., Wojciechowska, A.: A multistage verification procedure for the selection of models in the studies of complex formation equilibria. Pol. J. Chem. 65, 1797–1807 (1991)

    CAS  Google Scholar 

  16. Glasoe, P.K., Long, F.A.: Use of glass electrodes to measure acidities in deuterium oxide. J. Phys. Chem. 64, 188–189 (1960). doi:10.1021/j100830a521

    Article  CAS  Google Scholar 

  17. Lomozik, L., Gasowska, A.: Complexes of copper(II) with spermine and non-covalent interactions in the systems including nucleosides or nucleotides. J. Inorg. Biochem. 72, 37–47 (1998). doi:10.1016/S0162-0134(98)10060-0

    Article  CAS  Google Scholar 

  18. Lomozik, L., Gasowska, A., Bregier, R.: Coordination mode of adenosine 5′-diphosphate in ternary systems containing Cu(II), Cd(II) or Hg(II) ions and polyamines. J. Inorg. Biochem. 98, 1319–1330 (2004). doi:10.1016/j.jinorgbio.2004.04.007

    Article  CAS  Google Scholar 

  19. Gasowska, A., Lomozik, L.: Spectroscopic and potentiometric investigation of the solution structure and stability of Ni(II) and Co(II) complexes with adenosine 5′-monophosphate and 1,12-diamino-4,9-diazadodecane (spermine) or 1,11-diamino-4,8-diazaundecane. Polyhedron 21, 745–751 (2002). doi:10.1016/S0277-5387(02)00849-5

    Article  CAS  Google Scholar 

  20. Folsch, G., Osterberg, R.: The apparent acid ionization constants of some phosphorylated peptides and related compounds. J. Biol. Chem. 234, 2298–2303 (1959)

    CAS  Google Scholar 

  21. Martell, A.E., Smith, R.M.: Critical Stability Constants. Plenum Press, New York (1974)

    Google Scholar 

  22. Khalil, M.J.: Solution equilibria and stabilities of binary and ternary complexes with N-(2-acetamido) iminodiacetic acid and ribonucleotides (AMP, ADP, and ATP). J. Chem. Eng. Data 45, 837–840 (2000). doi:10.1021/je000041a

    Article  CAS  Google Scholar 

  23. Zachariou, M., Traverso, I., Spiccia, L., Hearn, M.T.W.: Potentiometric investigations into the acid-base and metal ion binding properties of immobilized metal ion affinity chromatographic (IMAC) adsorbents. J. Phys. Chem. 100, 12680–12690 (1996). doi:10.1021/jp9601476

    Article  CAS  Google Scholar 

  24. Bianchi, E.M., Ali, S., Sajadi, A., Song, B., Sigel, H.: Stabilities and isomeric equilibria in aqueous solution of monomeric metal ion complexes of adenosine 5′-diphosphate (ADP3−) in comparison with those of adenosine 5-monophosphate (AMP2−). Chem. Eur. J. 9, 881–892 (2003). doi:10.1002/chem.200390109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lechoslaw Lomozik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jastrzab, R., Lomozik, L. Effectiveness of Phosphate Groups in Noncovalent Interactions in Binary Adenosine Nucleotides/Phosphoserine Aqueous Systems. J Solution Chem 38, 35–46 (2009). https://doi.org/10.1007/s10953-008-9352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9352-5

Keywords

Navigation