Skip to main content
Log in

Spectroscopic Studies on the Interaction of Vitamin C with Bovine Serum Albumin

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of binding of vitamin C (VC) with bovine serum albumin (BSA) was investigated by spectroscopic methods under simulated physiological conditions. VC effectively quenched the intrinsic fluorescence of BSA. The binding constants K A, and the number of binding sites, n, and corresponding thermodynamic parameters ΔG Θ, ΔH Θ and ΔS Θ between VC and BSA were calculated at different temperatures. The primary binding pattern between VC and BSA was interpreted as being a hydrophobic interaction. The interaction between VC and BSA occurs through static quenching and the effect of VC on the conformation of BSA was also analyzed using synchronous fluorescence spectroscopy. The average binding distance, r, between the donor (BSA) and acceptor (VC) was determined based on Förster’s theory and was found to be 3.65 nm. The effects of common ions on the binding constant of VC-BSA were also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carter, D.C., Ho, J.X.: Structure of serum albumin. Adv. Protein Chem. 45, 153–203 (1994). doi:10.1016/S0065-3233(08)60640-3

    Article  CAS  Google Scholar 

  2. Seedher, N.: In vitro study of the mechanism of interaction of trifluperazine dihydrochloride with bovine serum albumin. Indian J. Pharm. Sci. 62, 16–20 (2000)

    CAS  Google Scholar 

  3. Kessler, M.A., Wolfbeis, O.S.: Laser-induced fluorometric determination of albumin using longwave absorbing molecular probes. Anal. Biochem. 200, 254–259 (1992). doi:10.1016/0003-2697(92)90462-G

    Article  CAS  Google Scholar 

  4. Xiao, J.B., Suzuki, M., Jiang, X., Chen, X., Yamamoto, K., Xu, M.: Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin. J. Agric. Food Chem. 56, 2350–2356 (2008). doi:10.1021/jf7037295

    Article  CAS  Google Scholar 

  5. Xiao, J.B., Shi, J., Cao, H., Wu, S.D., Ren, F.L., Xu, M.: Analysis of binding interaction between puerarin and bovine serum albumin by multi-spectroscopic method. J. Pharm. Biomed. 45, 609–615 (2007). doi:10.1016/j.jpba.2007.08.032

    Article  CAS  Google Scholar 

  6. Ran, D.H., Wu, X., Zheng, J.H., Yang, J.H., Zhou, H.P., Zhang, M.F., Tang, Y.J.: Study on the interaction between florasulam and bovine serum albumin. J. Fluoresc. 17, 721–726 (2007). doi:10.1007/s10895-007-0226-9

    Article  CAS  Google Scholar 

  7. Zhang, Y.Z., Zhou, B., Liu, Y.X., Zhou, C.X., Ding, X.L., Liu, Y.: Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene. J. Fluoresc. 18, 109–118 (2008). doi:10.1007/s10895-007-0247-4

    Article  CAS  Google Scholar 

  8. Xu, H., Liu, Q., Wen, Y: Spectroscopic studies on the interaction between nicotinamide and bovine serum albumin. Spectrochimica Acta Part A (in press)

  9. Fleming, D.J., Tucker, K.L., Jacques, P.F., Dallal, G.E., Wilson, P.W., Wood, R.J.: Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Studycohort. Am. J. Clin. Nutr. 76, 1375–1384 (2002)

    CAS  Google Scholar 

  10. Chen, Z., Young, T.E., Ling, J., Chang, S.C., Gallie, D.R.: Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc. Natl. Acad. Sci. USA 100, 3525–3530 (2003). doi:10.1073/pnas.0635176100

    Article  CAS  Google Scholar 

  11. Bose, B., Dube, A.: Interaction of Chlorin p6 with bovine serum albumin and photodynamic oxidation of protein. J. Photochem. Photobiol. B 85, 49–55 (2006). doi:10.1016/j.jphotobiol.2006.04.005

    Article  CAS  Google Scholar 

  12. Athina, P., Rebecca, J.G., Richard, A.E.: Interaction of flavonoids with bovine serum albumin: fluorescence quenching study. J. Agric. Food Chem. 53, 158–163 (2005). doi:10.1021/jf048693g

    Article  Google Scholar 

  13. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Plenum, New York/London (1983)

    Google Scholar 

  14. Lakowicz, J.R., Weber, G.: Quenching of fluorescence by oxygen-probe for structural fluctuations in macromolecules. Biochem. 12, 4161–4170 (1973). doi:10.1021/bi00745a020

    Article  CAS  Google Scholar 

  15. Hu, Y.J., Liu, Y., Zhang, L.X., Zhao, R.M., Qu, S.S.: Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J. Mol. Struct. 750, 174–178 (2005). doi:10.1016/j.molstruc.2005.04.032

    Article  CAS  Google Scholar 

  16. Liu, L., Y.M., Sun, G.Z., X.F.: Study on the interaction between colchicine and bovine serum albumins by fluorescence method. Chin. J. Anal. Chem. 32, 615–618 (2004)

    Google Scholar 

  17. Zhou, N., Liang, Y.Z., Wang, P.: Characterization of the interaction between furosemide and bovine serum albumin. J. Mol. Struct. 872, 190–196 (2008). doi:10.1016/j.molstruc.2007.02.035

    Article  CAS  Google Scholar 

  18. Eftink, M.R., Ghiron, C.A.: Fluorescence quenching of indole and model micelle systems. J. Phys. Chem. 80, 486–493 (1976). doi:10.1021/j100546a014

    Article  CAS  Google Scholar 

  19. Feng, X., Lin, Z., Yang, L., Wang, C., Bai, C.: Investigation of the interaction between acridine orange and bovine serum albumin. Talanta 47, 1223–1229 (1998). doi:10.1016/S0039-9140(98)00198-2

    Article  CAS  Google Scholar 

  20. Wei, X.F., Liu, H.Z.: The interaction between Triton X-100 and bovine serum albumin. Chin. J. Anal. Chem. 28, 699–701 (2000)

    CAS  Google Scholar 

  21. Ross, P.D., Subramanian, S.: Thermodynamics of protein association reactions: forces contributing to stability. Biochem. 20, 3096–3102 (1981). doi:10.1021/bi00514a017

    Article  CAS  Google Scholar 

  22. Förster, T., Sinanoglu, O. (eds.): Modern Quantum Chemistry, vol. 3. Academic Press, New York (1966). 93 p.

    Google Scholar 

  23. Cyril, L., Earl, J.K., Sperry, W.M. (eds.): Biochemist’s Handbook. F.N. Spon, London (1961). 84 p.

    Google Scholar 

  24. Valeur, B., Brochon, J.C.: New Trends in Fluorescence Spectroscopy, 6th edn. Springer, Berlin (1999). 25 p.

    Google Scholar 

  25. Yan, J.H., Liu, Y., Jia, B.W., Xiao, H.X., Song, S.Q.: Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J. Pharm. Biomed. Anal. 36, 915–919 (2004). doi:10.1016/j.jpba.2004.05.001

    Article  Google Scholar 

  26. He, W., Li, Y., Xue, C., Hu, Z., Chen, X., Sheng, F.: Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg. Med. Chem. 13, 1837–1845 (2005). doi:10.1016/j.bmc.2004.11.038

    Article  CAS  Google Scholar 

  27. Chen, G.Z., Huang, X.Z., Xu, J.G., Zheng, Z.Z., Wang, Z.B.: Methods of Fluorescence Analysis, 2nd edn. Science Press, Beijing (1990)

    Google Scholar 

  28. Miller, J.N.: Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem. Soc. 16, 203–208 (1979)

    CAS  Google Scholar 

  29. Sulkowska, A., Rownicka, J.: Effect of guanidine hydrochloride on bovine serum albumin complex with antithyroid drugs: fluorescence study. J. Mol. Struct. 704, 291–295 (2004). doi:10.1016/j.molstruc.2003.12.065

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Liu, Q., Zuo, Y. et al. Spectroscopic Studies on the Interaction of Vitamin C with Bovine Serum Albumin. J Solution Chem 38, 15–25 (2009). https://doi.org/10.1007/s10953-008-9351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9351-6

Keywords

Navigation