Skip to main content
Log in

The effect of Me4NBr, Et4NBr, Bu4NBr, and (EtOH)3EtNBr on the Temperature of Maximum Density of Water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The densities of aqueous solutions of Me4NBr, Et4NBr, Bu4NBr, and Et(OH)3EtNBr were measured in the concentration range 0.002 to 0.05 mol⋅kg−1. The temperature of the determinations ranged from 275.15 to 279.15 K in 0.5 K steps, and the uncertainty of the densities was around ±1×10−6 g⋅cm−3. Eleven concentrations were used for each of the salts.

It was found that all the solutes follow Despretz’ law. The absolute value of the Despretz’s constants increases with increasing number of carbon atoms in the cation, except for Et(OH)3EtNBr which has the highest value. The ionic contributions to the Despretz’s constants were calculated.

The volumetric data obtained allows the calculation proposed by Kalgud and Pokale. The effective ionic radii were calculated using a semi-empirical equation, as proposed previously by several workers. The nonlinearity of the plot of the ionic Despretz constants versus effective ionic radius is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franks, F.: Water: A Comprehensive Treatise, vol. II and IV. Plenum, New York (1978)

    Google Scholar 

  2. www.lsbu.ac.uk/water/index2.html

  3. Despretz, M.-C.: Recherches sur le maximum de densité de l’eau et des dissolitions aqueoses. Ann. Chem. Phys. 70, 49–81 (1839)

    Google Scholar 

  4. Blanco, L.-H., Torres, A.: Determination of Despretz constants of some salts and ions. Phys. Chem. Liq. 36, 187–197 (1998). doi:10.1080/00319109808030609

    Article  CAS  Google Scholar 

  5. Torres, A.: Ph.D. Thesis. Facultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia, Bogotá D.C. (2002)

  6. Wada, G., Umeda, S.: Effects of nonelectrolytes on the temperature of the maximum density of water. I. Alcohols. Bull. Chem. Soc. Jpn. 35, 646–652 (1962). doi:10.1246/bcsj.35.646

    Article  CAS  Google Scholar 

  7. Blanco, L.-H., Vargas, E.-F.: An improved magnetic float densimeter. Instrum. Sci. Technol. 32, 13–20 (2004). doi:10.1081/CI-120027343

    Article  CAS  Google Scholar 

  8. Riddik, J.-A., Bunger, W.-B.: Techniques of Chemistry, vol. II, 3rd edn. Wiley, New York (1970)

    Google Scholar 

  9. Conway, B.-E., Verrall, R.-E., Desnoyers, J.-E.: Partial molal volumes of tetraalkylammonium halides and assignment of individual ionic contributions. Trans. Faraday Soc. 62, 2738–2750 (1966). doi:10.1039/tf9666202738

    Article  CAS  Google Scholar 

  10. Wen, W.-Y., Saito, S.: Activity coefficients and molal volumes of two tetraethanolammonium halides in aqueous solutions at 25°C. J. Phys. Chem. 69, 3569–3574 (1965). doi:10.1021/j100894a053

    Article  CAS  Google Scholar 

  11. Smith, H.-T.: Solute–water interactions in dilute solutions by precision density measurements. Ph.D. Thesis. Bradford University (1967)

  12. Darnell, A.-J., Greyson, J.: The effect of structure-making and -breaking solutes on the temperature of maximum density of water. J. Phys. Chem. 72, 3021–3025 (1968). doi:10.1021/j100854a060

    Article  CAS  Google Scholar 

  13. Kaulgud, M.-V., Pokale, W.-K.: Measurement of the temperature of maximum density of aqueous solutions of some salts and acids. J. Chem. Soc., Faraday Trans. 91, 999–1004 (1995). doi:10.1039/ft9959100999

    Article  CAS  Google Scholar 

  14. Wakabayashi, T., Takaizumi, K.: Despretz constants for individual ions. Bull. Chem. Soc. Jpn. 55, 3073–3078 (1982). doi:10.1246/bcsj.55.3073

    Article  CAS  Google Scholar 

  15. Wada, G., Miura, M.: The effects of tetraalkylammonium salts on the structure and the temperature of the maximum density of water. Bull. Chem. Soc. Jpn. 42, 2498–2502 (1969). doi:10.1246/bcsj.42.2498

    Article  CAS  Google Scholar 

  16. Leyendekkers, J.-V.: The Tammann-Tait-Gibson model. J. Chem. Soc., Faraday Trans. I 76, 1206–1218 (1980). doi:10.1039/f19807601206

    Article  CAS  Google Scholar 

  17. Leyendekkers, J.-V.: Volumes of aqueous electrolyte solutions and the Tammann-Tait-Gibson model. J. Chem. Soc., Faraday Trans. I 77, 1529–1542 (1981). doi:10.1039/f19817701529

    Article  CAS  Google Scholar 

  18. Leyendekkers, J.-V.: Ionic contributions to partial molal volumes in aqueous solutions. J. Chem. Soc., Faraday Trans. I 78, 357–375 (1982). doi:10.1039/f19827800357

    Article  CAS  Google Scholar 

  19. Leyendekkers, J.-V.: Ion-water geometry and the Tammann-Tait-Gibson effective pressure and radius. J. Chem. Soc., Faraday Trans. I 78, 3383–3392 (1982). doi:10.1039/f19827803383

    Article  CAS  Google Scholar 

  20. Leyendekkers, J.-V.: Structure of aqueous electrolyte solutions. Thermodynamic internal pressure. J. Chem. Soc., Faraday Trans. I 79, 1109–1121 (1983). doi:10.1039/f19837901109

    Article  CAS  Google Scholar 

  21. Leyendekkers, J.-V.: Structure of aqueous electrolyte solutions. Ionic internal pressures and proton chemical shifts. J. Chem. Soc., Faraday Trans. I 79, 1123–1134 (1983). doi:10.1039/f19837901123

    Article  CAS  Google Scholar 

  22. Conway, B.-E., Laliberté, L.-H.: H2O-D2O solvent isotope effects in the volume and expansivity behaviour of some organic and inorganic ions. Trans. Faraday Soc. 1, 3032–3048 (1970). doi:10.1039/tf9706603032

    Article  Google Scholar 

  23. Lamb, A.-B., Lee, R.-E.: The densities of certain dilute aqueous solutions by a new and precise method. J. Am. Chem. Soc. 35, 1666–1693 (1913). doi:10.1021/ja02200a003

    Article  Google Scholar 

  24. Panckhurst, M.-H.: Determination and interpretation of absolute partial molal ionic volumes. Rev. Pure Appl. Chem. 19, 45–60 (1969)

    CAS  Google Scholar 

  25. Hepler, L.-G.: Partial molal volumes of aqueous ions. J. Phys. Chem. 61, 1426–1429 (1957). doi:10.1021/j150556a039

    Article  CAS  Google Scholar 

  26. Mukerjee, P.: On ion-solvent interactions. Part I. Partial molal volumes of ions in aqueous solution. J. Phys. Chem. 65, 740–744 (1961). doi:10.1021/j100823a009

    Article  CAS  Google Scholar 

  27. Stokes, R.-H., Robinson, R.-A.: The application of volume fraction statistics to the calculation of activities of hydrated electrolytes. Trans. Faraday Soc. 53, 301–305 (1957). doi:10.1039/tf9575300301

    Article  CAS  Google Scholar 

  28. Glueckauf, E.: Molar volumes of ions. Trans. Faraday Soc. 61, 914–922 (1965). doi:10.1039/tf9656100914

    Article  Google Scholar 

  29. Noyes, R.-M.: Assignment of individual ionic contributions to properties of aqueous ions. J. Am. Chem. Soc. 86, 971–979 (1964). doi:10.1021/ja01060a001

    Article  CAS  Google Scholar 

  30. Millero, F.-J.: Partial molal volume of ions in various solvents. J. Phys. Chem. 73, 2417–2420 (1969). doi:10.1021/j100727a056

    Article  CAS  Google Scholar 

  31. Conway, B.-E., Verrall, R.-E., Desnoyers, J.-E.: Specificity in ionic hydration and the evaluation of individual ionic properties. Z. Phys. Chem. 230, 157–178 (1965)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis H. Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, L.H., Torres, A. The effect of Me4NBr, Et4NBr, Bu4NBr, and (EtOH)3EtNBr on the Temperature of Maximum Density of Water. J Solution Chem 37, 1657–1669 (2008). https://doi.org/10.1007/s10953-008-9340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9340-9

Keywords

Navigation