Skip to main content
Log in

Binary Homogeneous Nucleation in Selected Aqueous Vapor Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The objective of this article is to give an overview of available experimental techniques and theoretical fundaments of the classical theories of homogeneous binary nucleation. The principles of the experimental setups are reviewed, ranging from low-nucleation-rate (≤103 nuclei/(cm3⋅s)) devices, i.e., thermal-diffusion cloud chamber, expansion chamber, over-nucleation pulse technique, and nozzle flow, to the condensation wave technique which is applied for the fastest nucleation rates (∼1015 nuclei⋅(cm3⋅s)−1). The theoretical description is based on the capillary approximation and takes into account the real properties of fluids (liquid mixtures) including the effects of non-equilibrium processes. A very important effect is associated with the surface tension dependence on the concentration of admixtures that can have a serious impact on the value of the nucleus formation energy. In the case of surfactants (i.e., molecules that can transiently bond with water through hydrogen bonding, e.g., alcohols) the nucleation work is decreased and for inorganic salts (hydrophobic molecules tend to be non-polar) the nucleation work is increased. The theoretical results are compared with the available experimental data. Also, the role of salts in power plant chemistry is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Phys. 24, 719–752 (1935)

    Article  CAS  Google Scholar 

  2. Volmer, M.: Kinetik der Phasebildung. Verlag von Theodor Steinkopff, Dresden (1939)

    Google Scholar 

  3. Reiss, H.: The kinetics of phase transitions in binary systems. J. Chem. Phys. 18, 840–848 (1050)

    Article  Google Scholar 

  4. Stauffer, D.: Kinetic theory of two-component (“heteromolecular”) nucleation and condensation. J. Aerosol Sci. 7, 319–333 (1976)

    Article  CAS  Google Scholar 

  5. Demo, P., Kožíšek, Z., Šášik, R.: Analytical approach to time lag in binary nucleation. Phys. Rev. E 59, 5124–5127 (1999)

    Article  CAS  Google Scholar 

  6. Katz, J.L.: Condensation of a supersaturated vapor. I. The homogeneous nucleation of the n-alkanes. J. Chem. Phys. 52, 4733–4748 (1970)

    Article  CAS  Google Scholar 

  7. Smolík, J., Ždímal, V.: Condensation of supersaturated vapor of dioctyl-phthalate: Homogeneous nucleation rate measurements. Aerosol Sci. Technol. 20, 127–134 (1994)

    Article  Google Scholar 

  8. Strey, R., Viisanen, Y., Wagner, P.E.: Measurement of the molecular content of binary nuclei. III. Use of the nucleation rate surfaces for the water-n-alcohol series. J. Chem. Phys. 103, 4333–4345 (1995)

    Article  CAS  Google Scholar 

  9. Viisanen, Y., Strey, R., Reiss, H.: Homogeneous nucleation rates for water. J. Chem. Phys. 99, 4680–4692 (1993)

    Article  CAS  Google Scholar 

  10. Looijmans, K.N.H., Kriesels, P.C., van Dongen, M.E.H.: Gas dynamics aspects of a modified expansion-shock tube for nucleation studies. Exp. Fluids 16, 61–64 (1993)

    Google Scholar 

  11. Looijmans, K.N.H., van Dongen, M.E.H.: A pulse-expansion wave tube for nucleation studies at high pressures. Exp. Fluids 23, 54–63 (1997)

    Article  CAS  Google Scholar 

  12. Holten, V., Labetski, D.G., van Dongen, M.E.H.: Homogeneous nucleation of water between 200 and 240 K: New wave tube data and estimation of the Tolman length. J. Chem. Phys. 123, 104505–1-9 (2005)

    Article  CAS  Google Scholar 

  13. Delale, C.F., Schnerr, G.H., Zierep, J.: Asymptotic solution of transonic nozzle flows with homogeneous condensation. I. Subcritical flows, II. Supercritical flows. Phys. Fluids A 5, 2982–2995 (1993)

    Article  CAS  Google Scholar 

  14. Adam, S., Schnerr, G.H.: Instabilities and bifurcation of non-equilibrium two-phase flow. J. Fluid. Mech. 348, 1–28 (1997)

    Article  CAS  Google Scholar 

  15. Petr, V., Kolovratník, M.: Contribution to the nucleation process in steam turbines. In: Tremaine, P.R., et al. (eds.) Steam, Water, and Hydrothermal Systems. Proceedings of the 13th International Conference on the Properties of Water and Steam, pp. 926–933. NRC Research Press, Ottawa (2000)

    Google Scholar 

  16. Wyslouzil, B.E., Wilemski, G., Strey, R., Seifert, S., Winans, R.E.: Small angle X-ray scattering measurements probe water nanodroplet evolution under highly non-equilibrium conditions. Phys. Chem. Chem. Phys. 9, 5353–5358 (2007)

    Article  CAS  Google Scholar 

  17. Kim, Y.J., Wyslouzil, B.E., Wilemski, G., Wolk, J., Strey, R.: Isothermal nucleation rates in supersonic nozzles and the properties of small water clusters. J. Phys. Chem. A 108, 4365–4377 (2004)

    Article  CAS  Google Scholar 

  18. Moses, C.A., Stein, G.D.: Growth of steam droplets formed in a Laval nozzle using both static pressure and light-scattering measurements. J. Fluids Eng. 100, 311–322 (1978)

    Google Scholar 

  19. Lamanna, G., van Poppel, J., van Dongen, M.E.H.: Experimental determination of droplet size and density field in condensing flows. Exp. Fluids 32, 381–395 (2002)

    Article  CAS  Google Scholar 

  20. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by small Particles. Wiley, New York (1983)

    Google Scholar 

  21. Maršík, F., Lankaš, F., Blaha, J.: Nucleation and condensation rate measurement of water in the expansion part of a shock tube. In: Houwing, A.F.P., Paul, A. (eds.) Proceedings of the 21th International Symposium on Shock Waves, pp. 1013–1018. Panther Pub., Australia (1997)

    Google Scholar 

  22. Viisanen, Y., Kulmala, M., Laaksonen, A.: Experiments on gas-liquid nucleation of sulfuric acid and water. J. Chem. Phys. 107, 920–926 (1997)

    Article  CAS  Google Scholar 

  23. Wyslouzil, B.E., Heath, C.H., Cheung, J.L., Wilemski, G.: Binary condensation in a supersonic nozzle. J. Chem. Phys. 113, 7317–7329 (2000)

    Article  CAS  Google Scholar 

  24. Wyslouzil, B.E., Seinfeld, J.H., Flagan, R.C., Okuyama, K.: Binary nucleation in acid-water systems. II. Sulfuric acid-water and a comparison with methanesulfonic acid-water. J. Chem. Phys. 94, 6842–6850 (1991)

    Article  CAS  Google Scholar 

  25. Mirabel, P., Clavelin, J.L.: Experimental study of nucleation in binary mixtures: The nitric acid-water and sulfuric acid-water systems. J. Chem. Phys. 68, 5020–5027 (1978)

    Article  CAS  Google Scholar 

  26. Bolsaitis, P.: Elliot J.F.: Thermodynamic activities and equilibrium partial pressure for aqueous sulfuric acid solutions. J. Chem. Eng. Data 35, 69–85 (1990)

    Article  CAS  Google Scholar 

  27. Harvey, A.H., Bellows, J.C.: Evaluation and correlation of steam solubility data for salts and minerals of interest in the power industry. NIST Technical Note 1387, U.S. Government Printing Office, Washington (1997)

  28. Prausnitz, J.M., Lichenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd edn. Prentice Hall, New York (1986)

    Google Scholar 

  29. Atkins, P.W.: Physical Chemistry, 6th edn. Oxford University Press, Oxford (1998)

    Google Scholar 

  30. Bader, M.S.H., Gasem, K.A.M.: Determination of infinite dilution activity coefficients for organic aqueous systems using a dilute vapour-liquid equilibrium method. Chem. Eng. Comm. 140, 41–72 (1996)

    Article  CAS  Google Scholar 

  31. Sandler, R.: Compilation of Henry’s law constant for inorganic and organic species of potential importance in environmental chemistry. Centre for Atmospheric Chemistry, York University, North York, Ontario, Canada (1996). http:www.science.yorku.ca/cac/people/sander/res/henry.html

  32. Tillner-Roth, R., Friend, D.G.: A Helmholtz free energy formulation of the thermodynamic properties of the mixture water-ammonia. J. Phys. Chem. Ref. Data 27, 64–96 (1998)

    Google Scholar 

  33. IAPWS 1994: International Association for the Properties of Water and Steam, Release on Surface Tension of Ordinary Water Substance, Revision of the 1983 Release, IAPWS Secretariat (1994)

  34. Wyslouzil, B.E., Wilemski, G.: Binary nucleation kinetics. II. Numerical solution of the birth-death equations. J. Chem. Phys. 103, 1137–1151 (1995)

    Article  CAS  Google Scholar 

  35. Flagan, R.C.: A thermodynamically consistent kinetic framework for binary nucleation. J. Chem. Phys. 127, 214503–1-7 (2007)

    Article  Google Scholar 

  36. Wilemski, G., Wyslouzil, B.E.: Binary nucleation kinetics. I. Self-consistent size distribution. J. Chem. Phys. 103, 1127–1136 (1995)

    Article  CAS  Google Scholar 

  37. Kaschiev, D.: Nucleation: Basic Theory with Applications. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  38. Wyslouzil, B.E., Seinfeld, J.H., Flagan, R.C., Okuyama, K.: Binary nucleation in acid-water systems. I. Methanesulfonic acid-water. J. Chem. Phys. 94, 6827–6841 (1991)

    Article  CAS  Google Scholar 

  39. Viisanen, Y., Strey, R., Laaksonen, A., Kulmala, M.: Measurement of the molecular content of binary nuclei. II. Use of the nucleation rate surface for water–ethanol. J. Chem. Phys. 100, 6062–6072 (1994)

    Article  CAS  Google Scholar 

  40. Kulmala, M., Lazaridis, M., Laaksonen, A., Vesela, T.: Extended hydrates interaction model: Hydrate formation and the energetics of binary homogeneous nucleation. J. Chem. Phys. 94, 7411–7413 (1991)

    Article  CAS  Google Scholar 

  41. Nishioka, K., Fujita, K.: Transient nucleation in binary vapor of water and sulfuric acid. J. Chem. Phys. 100, 532–540 (1993)

    Article  Google Scholar 

  42. Kusaka, I., Wang, Z., Seinfeld, J.H.: Binary nucleation of sulfuric acid-water: Monte Carlo simulation. J. Chem. Phys. 108, 6829–6848 (1998)

    Article  CAS  Google Scholar 

  43. Balescu, R.: Equilibrium and Non-equilibrium Statistical Mechanics. Wiley, New York (1975)

    Google Scholar 

  44. Oxtoby, D.W., Kashchiev, D.: A general relation between the nucleation work and size of nucleus in multi-component nucleation. J. Chem. Phys. 100, 7665–7671 (1994)

    Article  CAS  Google Scholar 

  45. Št’astný, M., Šejna, M., Dooley, R.B., Jonas, O.: Heterogenous condensation of steam flowing through a turbine cascade. In: Tremaine, P.R., et al. (eds.) Steam, Water, and Hydrothermal Systems. Proceedings of the 13th International Conference on the Properties of Water and Steam, pp. 918–925. NRC Research Press, Ottawa (2000)

    Google Scholar 

  46. Wölk, J., Strey, R.: Homogeneous nucleation of H2O and D2O in comparison: the isotope effect. J. Phys. Chem. B 105, 11683–11701 (2001)

    Article  Google Scholar 

  47. Baidakov, V.G., Boltashev, G.S., Schmeltzer, J.W.P.: Comparison of different approaches to the determination of the work of critical cluster formation. J. Colloid Interface Sci. 231, 312–321 (2000)

    Article  CAS  Google Scholar 

  48. Flageollet-Daniel, C., Garnier, J.P., Mirabel, P.: Microscopic surface tension and binary nucleation. J. Chem. Phys. 78, 2600–2606 (1983)

    Article  CAS  Google Scholar 

  49. Laaksonen, A., Kulmala, M.: An explicit cluster model for binary nuclei in water-alcohol systems. J. Chem. Phys. 95, 67–45 (1991)

    Article  Google Scholar 

  50. Reguera, D., Bowles, R.K., Djikaev, Y., Reiss, H.: Phase transitions in systems small enough to be clusters. J. Chem. Phys. 118, 340–353 (2003)

    Article  CAS  Google Scholar 

  51. Laaksonen, A., McGraw, R., Vehkamäki, H.: Liquid-drop formalism and free-energy surfaces in binary homogeneous nucleation theory. J. Chem. Phys. 111, 2019–2027 (1999)

    Article  CAS  Google Scholar 

  52. Schmitt, J.L., Whitten, J., Adams, G.W., Zalabsky, R.A.: Binary nucleation of ethanol and water. J. Chem. Phys. 92, 36–93 (1990)

    Article  Google Scholar 

  53. Flageollet, C., Dinh Cao, C., Mirabel, P.: Experimental study of nucleation in binary mixtures: The methanol–water and n-propanol–water systems. J. Chem. Phys. 72, 544–549 (1980)

    Article  CAS  Google Scholar 

  54. Ball, S.M., Hanson, D.R., Eisele, F.L., McMurry, P.H.: Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors. J. Geophys. Res. 104, 23709–23718 (1999)

    Article  CAS  Google Scholar 

  55. Guha, A., Young, J.: The effects of flow unsteadiness on the homogeneous nucleation of water droplets in steam turbines. Phil. Trans. R. Soc., Ser. A 349, 445–472 (1994)

    Article  Google Scholar 

  56. Gyarmathy, G., Spengler, P.: Über die Strömungs funkcionen in mehrstufigen thermischen Turbomaschinen. Traupel Festschrift. Juris Verlag, Zürich (1974)

    Google Scholar 

  57. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids, 4th edn. McGraw-Hill, Boston (1987)

    Google Scholar 

  58. Moore, M.J., Sieverding, C.H.: Two-Phase Steam Flow in Turbines and Separators. McGraw-Hill, New York (1976)

    Google Scholar 

  59. Dooley, R.B., Bursik, A., Staudt, U.: Steam and chemistry. Proceedings VGB/EPRI Conference on Steam Chemistry, Freiburg Germany (1999)

  60. Petr, V., Kolovratník, M.: Modelling of the droplet size distribution in LP steam turbine. In: 3rd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, IMechE Conference Transactions, London (19991B) 771-782 (1999)

  61. Hanzal, V.: Experimental prediction of the size and concentration of heterogeneous condensation seeds in steam. PhD Thesis (in Power Engineering), Czech Technical University in Prague, Prague (2005)

  62. Petr, V., Kolovratník, M., Hanzal, V.: Instrumentation and tests on droplet nucleation in LP steam turbines. Power Plant. Chem. 5, 389–395 (2003)

    Google Scholar 

  63. Hrubý, J., Kolovratník, M., Ždímal, V., Jiříček, I., Bartoš, O., Moravec, P.: Determination of the heterogeneous nuclei in the superheated steam using a new sampling technique. In: Turbomachinery Fluid Dynamics and Thermodynamics, pp. 861–866, Athens (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Maršík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maršík, F., Němec, T., Hrubý, J. et al. Binary Homogeneous Nucleation in Selected Aqueous Vapor Mixtures. J Solution Chem 37, 1671–1708 (2008). https://doi.org/10.1007/s10953-008-9337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9337-4

Keywords

Navigation