Skip to main content
Log in

An Alternate Solution of the Fluorescence Recovery Kinetics after Spot-Bleaching for Measuring Diffusion Coefficients. 1. Theory and Numerical Analysis

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The classical three-point method for obtaining a diffusion coefficient of probes from the fluorescence recovery function in the Fluorescence Recovery After Photobleaching (FRAP) technique, when Gaussian or uniform spot-photobleaching profiles are used, leads to an expression that is not suitable for linear fittings. Therefore, determination of the diffusion coefficient is complex and very dependent on the recovery time. In this work we propose a new solution for the fluorescence recovery function after spot-bleaching using a Gaussian beam, which is a better alternative method than the three-point method for the data analysis of the FRAP kinetics. The new method can be applied for shorter recovery times thereby minimizing errors due to convective effects. It leads to a linear relationship between the recovery function and the diffusion coefficient and, as shown in the analysis of a model case, allows a more accurate determination of the diffusion coefficient of fluorescent probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peters, R., Peters, J., Tews, K.H., Bähr, W.: A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim. Biophys. Acta Biomembr. 367, 282–294 (1974)

    Article  CAS  Google Scholar 

  2. Jacobson, K., Wu, E., Poste, G.: Measurement of the translational mobility of concanavalin A in glycerol-saline solution and on the cell surface by fluorescence recovery after photobleaching. Biochim. Biophys. Acta Biomembr. 433, 215–222 (1976)

    Article  CAS  Google Scholar 

  3. Schlessinger, J., Koppel, D.E., Axelrod, D., Jacobson, K., Webb, W.W., Elson, E.L.: Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc. Natl. Acad. Sci. USA 73, 2409–2413 (1976). doi:10.1073/pnas.73.7.2409

    Article  CAS  Google Scholar 

  4. Edidin, M., Zagyansky, Y., Lardner, T.J.: Measurement of membrane protein lateral diffusion in single cells. Science 191, 466–468 (1976). doi:10.1126/science.1246629

    Article  CAS  Google Scholar 

  5. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W.: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976)

    CAS  Google Scholar 

  6. Koppel, D.E., Axelrod, D., Schlessinger, J., Elson, E., Webb, W.W.: Dynamics of fluorescence marker concentration as a probe of mobility. Biophys. J. 16, 1315–1329 (1976)

    CAS  Google Scholar 

  7. Kovaleski, J.M., Wirth, M.J.: Applications of fluorescence recovery after photobleaching. Anal. Chem. News Features (October 1), 601A–605A (1997)

  8. Mustafa, M.B., Tipton, D.L., Barkely, M.D., Russo, P.S.: Dye diffusion in isotropic and liquid crystalline aqueous (hydroxypropyl)cellulose. Macromolecules 26, 370–378 (1993). doi:10.1021/ma00054a017

    Article  CAS  Google Scholar 

  9. Champion, D., Hevert, H., Blond, G., Simatos, D.: Comparison between two methods to measure translational diffusion of a small molecule at subzero temperature. J. Agric. Food Chem. 43, 2887–2891 (1995). doi:10.1021/jf00059a022

    Article  CAS  Google Scholar 

  10. Blackburn, F.R., Wang, C., Ediger, M.D.: Translational and rotational motion of probes in supercooled 1,3,5-tris(naphthyl)benzene. J. Phys. Chem. 100, 18249–18257 (1996). doi:10.1021/jp9622041

    Article  CAS  Google Scholar 

  11. Champion, D., Hevert, H., Blond, G., Le Meste, M., Simatos, D.: Translational diffusion in sucrose solutions in the vicinity of their glass transition temperature. J. Phys. Chem. B 101, 10674–10679 (1997). doi:10.1021/jp971899i

    Article  CAS  Google Scholar 

  12. Rampp, M., Buttersack, C., Lüdemann, H.-D.: c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions. Carbohydr. Res. 328, 561–572 (2000). doi:10.1016/S0008-6215(00)00141-5

    Article  CAS  Google Scholar 

  13. Longinotti, M.P., Corti, H.R.: Diffusion of ferrocene methanol in supercooled aqueous solutions using cylindrical microelectrodes. Electrochem. Commun. 9, 1444–1450 (2006). doi:10.1016/j.elecom.2007.02.003

    Article  CAS  Google Scholar 

  14. Magazù, S., Maisano, G., Migliardo, P., Villari, V.: Experimental simulation of macromolecules in trehalose aqueous solutions: a photon correlation spectroscopy study. J. Chem. Phys. 111, 9086–9092 (1999). doi:10.1063/1.480250

    Article  Google Scholar 

  15. Eggeling, C., Widengren, J., Rigler, R., Seidel, C.A.M.: Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal. Chem. 70, 2651–2659 (1998). doi:10.1021/ac980027p

    Article  CAS  Google Scholar 

  16. Pringsheim, P.: Fluorescence and Phosphorescence. Interscience Publishers Inc., London (1949)

    Google Scholar 

  17. Wells, S.: Fundamentals of Fluorescence. In: O’Brien Workshop. Optical Microscopy in Renal Research, Indiana University-School of Medicine (2003)

  18. Song, L., Hennink, E.J., Young, I.T., Tanke, H.J.: Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68, 2588–2600 (1995)

    CAS  Google Scholar 

  19. Davis, P.J.: Gamma function and related functions. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions, 4th edn. Dover, New York (1965)

    Google Scholar 

  20. Box, M.J.: Bias in nonlinear estimation. J. R. Stat. Soc. B 33, 171–201 (1971)

    Google Scholar 

  21. Olver, F.W.J.: Bessel functions of integer order. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions, 4th edn. Dover, New York (1965)

    Google Scholar 

  22. Luke, Y.L.: Integrals of Bessel functions. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions, 4th edn. Dover, New York (1965)

    Google Scholar 

  23. Wrench, J.W.: Concerning two series for the gamma function. Math. Comput. 22, 617–626 (1968). doi:10.2307/2004538

    Article  Google Scholar 

  24. Mathews, J.H., Fink, K.D.: Métodos Numéricos con Matlab, 3rd edn., p. 393. Pearson Educación S.A., Madrid (2005)

    Google Scholar 

  25. Barreto, H., Maharry, D.: Least median of squares and regression through the origin. Comput. Stat. Data Anal. 50, 1391–1397 (2006). doi:10.1016/j.csda.2005.01.005

    Article  Google Scholar 

  26. Saxton, M.J.: Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. Biophys. J. 81, 2226–2240 (2001)

    Article  CAS  Google Scholar 

  27. Hubert, M., Rousseeuw, P.J.: Robust regression with both continuous and binary regressors. J. Stat. Plann. Inf. 57, 153–163 (1997). doi:10.1016/S0378-3758(96)00041-9

    Article  Google Scholar 

  28. Corti, H.R., Frank, G.A., Marconi, M.C.: An alternative solution of the fluorescence recovery kinetics after spot-bleaching for measuring diffusion coefficients. 2. Diffusion of fluorescein in sucrose aqueous solutions. J. Solution Chem. 37 (2008). doi:10.1007/s10953-008-9329-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Corti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, G.A., Marconi, M.C. & Corti, H.R. An Alternate Solution of the Fluorescence Recovery Kinetics after Spot-Bleaching for Measuring Diffusion Coefficients. 1. Theory and Numerical Analysis. J Solution Chem 37, 1575–1591 (2008). https://doi.org/10.1007/s10953-008-9330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9330-y

Keywords

Navigation