Abstract
The traditional analysis of the fluorescence recovery kinetics after spot bleaching yields expressions for the diffusion coefficient of the probe that are not suitable for linear fittings. In a previous work we developed an improved recovery function that is a better alternative for data analysis. To illustrate its application to real cases and compare it with the previous data treatment, we measured the time response of fluorescein in aqueous sucrose solutions, covering the unsaturated and the supercooled region, where decoupling between diffusion and viscosity is observed. The results are compared with the mobility of different types of solutes in aqueous sucrose solutions and are discussed in terms of the classical hydrodynamic model.
Similar content being viewed by others
References
Frank, G.A., Marconi, M.C., Corti, H.R.: An alternative solution of the fluorescence recovery kinetics after spot-bleaching for measuring diffusion coefficients. 1. Theory and numerical analysis. J. Solution Chem. 37 (2008). doi:10.1007/s10953-008-9330-y
Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W.: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976)
Champion, D., Hevert, H., Blond, G., Le Meste, M., Simatos, D.: Translational diffusion in sucrose solutions in the vicinity of their glass transition temperature. J. Phys. Chem. B 101, 10674–10679 (1997). doi:10.1021/jp971899i
Bellows, R.J., King, C.J.: Product collapse during freeze drying of liquid foods. AIChE Symp. Ser. 69, 33–41 (1973)
Kerr, W.L., Reid, D.S.: Temperature dependence of the viscosity of sugar and maltodextrin solutions in coexistence with ice. Lebenson. Wiss. Technol. 27, 225–231 (1994). doi:10.1006/fstl.1994.1046
Génotelle, J.: Expression de la viscosité des solutions sucrées. Ind. Alim. Agric. 95, 747–755 (1978)
Longinotti, M.P., Corti, H.R.: Viscosity of concentrated trehalose and sucrose aqueous solutions including the supercooled regime. J. Phys. Ref. Data 37, 1503–1515 (2008). doi:10.1063/1.2932114
Gordon, J.M., Taylor, J.S.: Ideal copolymers and second-order transitions in synthetic rubbers. I. Non-crystalline polymers. J. Appl. Chem. 2, 493–500 (1952)
Moore, A.W., Jorgenson, J.W.: Study of zone broadening in optically gated high-speed capillary electrophoresis. Anal. Chem. 65, 3550–3560 (1993). doi:10.1021/ac00072a004
Mustafa, M.B., Tipton, D.L., Russo, P.S.: Temperature ramped fluorescence photobleaching recovery for the direct evaluation of thermoreversible gels. Macromolecules 22, 1500–1504 (1989). doi:10.1021/ma00193a089
Mosier, B.P., Molho, J.J., Santiago, J.G.: Photobleached-fluorescence imaging of microflows. Exp. Fluids 33, 545–554 (2002)
Mustafa, M.B., Tipton, D.L., Barkley, M.D., Russo, P.S.: Dye diffusion in isotropic and liquid crystalline aqueous (hydroxypropyl)cellulose. Macromolecules 26, 370–378 (1993). doi:10.1021/ma00054a017
Wang, L., Roitberg, A., Meuse, C., Gaigalas, A.K.: Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, 1781–1791 (2001). doi:10.1016/S1386-1425(01)00408-5
Sjöback, R., Nygren, J., Kubista, M.: Absorption and fluorescence properties of fluorescein. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, L7–L21 (1995). doi:10.1016/0584-8539(95)01421-P
Hubbard, J.B., Douglas, J.F.: Hydrodynamic friction of arbitrarily shaped Brownian particles. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, R2983–R2986 (1993). doi:10.1103/PhysRevE.47.R2983
Longinotti, M.P., Corti, H.R.: Diffusion of ferrocene methanol in supercooled aqueous solutions using cylindrical microelectrodes. Electrochem. Commun. 9, 1444–1450 (2006). doi:10.1016/j.elecom.2007.02.003
Blackburn, F.R., Wang, C., Ediger, M.D.: Translational and rotational motion of probes in supercooled 1,3,5-tris(naphthyl)benzene. J. Phys. Chem. 100, 18249–18257 (1996). doi:10.1021/jp9622041
Priasamy, N., Bicknese, S., Verkman, A.S.: Reversible photobleaching of fluorescein conjugates in air-atured viscous solutions: singlet and triplet state quenching by tryptophan. Photochem. Photobiol. 63, 265–271 (1996). doi:10.1111/j.1751-1097.1996.tb03023.x
Miao, W., Ding, Z., Bard, A.J.: Solution viscosity effects on the heterogeneous electron transfer kinetics of ferrocenemethanol in dimethyl sulfoxide-water mixtures. J. Phys. Chem. 106, 1392–1398 (2002). doi:10.1021/jp013451u
Hodgdon, J.A., Stillinger, F.H.: Stokes-Einstein violation in glass-forming liquids. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50, 2064–2068 (1994). doi:10.1103/PhysRevE.50.2064
Tarjus, G., Kivelson, D.: Breakdown of the Stokes-Einstein relation in supercooled liquids. J. Chem. Phys. 103, 3071–3073 (1995). doi:10.1063/1.470495
Chang, I., Sillescu, H.: Heterogeneity at the glass transition: translational and rotacional self-diffusion. J. Phys. Chem. 101, 8794–8801 (1997). doi:10.1021/jp9640989
Cicerone, M.T., Wagner, P.A., Ediger, M.D.: Translational diffusion on heterogeneous lattices: a model for dynamics in glass forming materials. J. Phys. Chem. B 101, 8727–8734 (1997). doi:10.1021/jp970595t
Xia, X., Wolynes, P.G.: Microscopic theory of heterogeneity and nonexponential relaxations in supercooled liquids. Phys. Rev. Lett. 86, 5526–5529 (2001). doi:10.1103/PhysRevLett.86.5526
Xia, X., Wolynes, P.G.: Diffusion and the mesoscopic hydrodynamics of supercooled liquids. J. Phys. Chem. B 105, 6570–6573 (2001). doi:10.1021/jp004616m
Garrahan, J.P., Chandler, D.: Coarse-grained microscopic model of glass formers. Proc. Natl. Acad. Sci. USA 100, 9710–9714 (2003). doi:10.1073/pnas.1233719100
Miller, D.P., Conrad, P.B., Fucito, S., de Pablo, J.J., Corti, H.R.: Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride. J. Phys. Chem. B 104, 1041–10425 (2000) doi:10.1021/jp000730t
Longinotti, M.P., Mazzobre, M.F., Buera, M.P., Corti, H.R.: Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 2. Sugar crystallization rate and electrical conductivity behaviour. Phys. Chem. Chem. Phys. 4, 533–540 (2002). doi:10.1039/b107746e
Spiro, M.: In: Rossiter, B.W., Hamilton, J.F. (eds.) Physical Methods of Chemistry, 5th edn. Interscience, New York (1984)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Corti, H.R., Frank, G.A. & Marconi, M.C. An Alternate Solution of Fluorescence Recovery Kinetics after Spot-Bleaching for Measuring Diffusion Coefficients. 2. Diffusion of Fluorescein in Aqueous Sucrose Solutions. J Solution Chem 37, 1593–1608 (2008). https://doi.org/10.1007/s10953-008-9329-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-008-9329-4