Skip to main content
Log in

An Alternate Solution of Fluorescence Recovery Kinetics after Spot-Bleaching for Measuring Diffusion Coefficients. 2. Diffusion of Fluorescein in Aqueous Sucrose Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The traditional analysis of the fluorescence recovery kinetics after spot bleaching yields expressions for the diffusion coefficient of the probe that are not suitable for linear fittings. In a previous work we developed an improved recovery function that is a better alternative for data analysis. To illustrate its application to real cases and compare it with the previous data treatment, we measured the time response of fluorescein in aqueous sucrose solutions, covering the unsaturated and the supercooled region, where decoupling between diffusion and viscosity is observed. The results are compared with the mobility of different types of solutes in aqueous sucrose solutions and are discussed in terms of the classical hydrodynamic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frank, G.A., Marconi, M.C., Corti, H.R.: An alternative solution of the fluorescence recovery kinetics after spot-bleaching for measuring diffusion coefficients. 1. Theory and numerical analysis. J. Solution Chem. 37 (2008). doi:10.1007/s10953-008-9330-y

  2. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W.: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976)

    Article  CAS  Google Scholar 

  3. Champion, D., Hevert, H., Blond, G., Le Meste, M., Simatos, D.: Translational diffusion in sucrose solutions in the vicinity of their glass transition temperature. J. Phys. Chem. B 101, 10674–10679 (1997). doi:10.1021/jp971899i

    Article  CAS  Google Scholar 

  4. Bellows, R.J., King, C.J.: Product collapse during freeze drying of liquid foods. AIChE Symp. Ser. 69, 33–41 (1973)

    CAS  Google Scholar 

  5. Kerr, W.L., Reid, D.S.: Temperature dependence of the viscosity of sugar and maltodextrin solutions in coexistence with ice. Lebenson. Wiss. Technol. 27, 225–231 (1994). doi:10.1006/fstl.1994.1046

    Article  CAS  Google Scholar 

  6. Génotelle, J.: Expression de la viscosité des solutions sucrées. Ind. Alim. Agric. 95, 747–755 (1978)

    Google Scholar 

  7. Longinotti, M.P., Corti, H.R.: Viscosity of concentrated trehalose and sucrose aqueous solutions including the supercooled regime. J. Phys. Ref. Data 37, 1503–1515 (2008). doi:10.1063/1.2932114

    Article  CAS  Google Scholar 

  8. Gordon, J.M., Taylor, J.S.: Ideal copolymers and second-order transitions in synthetic rubbers. I. Non-crystalline polymers. J. Appl. Chem. 2, 493–500 (1952)

    CAS  Google Scholar 

  9. Moore, A.W., Jorgenson, J.W.: Study of zone broadening in optically gated high-speed capillary electrophoresis. Anal. Chem. 65, 3550–3560 (1993). doi:10.1021/ac00072a004

    Article  CAS  Google Scholar 

  10. Mustafa, M.B., Tipton, D.L., Russo, P.S.: Temperature ramped fluorescence photobleaching recovery for the direct evaluation of thermoreversible gels. Macromolecules 22, 1500–1504 (1989). doi:10.1021/ma00193a089

    Article  CAS  Google Scholar 

  11. Mosier, B.P., Molho, J.J., Santiago, J.G.: Photobleached-fluorescence imaging of microflows. Exp. Fluids 33, 545–554 (2002)

    CAS  Google Scholar 

  12. Mustafa, M.B., Tipton, D.L., Barkley, M.D., Russo, P.S.: Dye diffusion in isotropic and liquid crystalline aqueous (hydroxypropyl)cellulose. Macromolecules 26, 370–378 (1993). doi:10.1021/ma00054a017

    Article  CAS  Google Scholar 

  13. Wang, L., Roitberg, A., Meuse, C., Gaigalas, A.K.: Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, 1781–1791 (2001). doi:10.1016/S1386-1425(01)00408-5

    Article  Google Scholar 

  14. Sjöback, R., Nygren, J., Kubista, M.: Absorption and fluorescence properties of fluorescein. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, L7–L21 (1995). doi:10.1016/0584-8539(95)01421-P

    Article  Google Scholar 

  15. Hubbard, J.B., Douglas, J.F.: Hydrodynamic friction of arbitrarily shaped Brownian particles. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, R2983–R2986 (1993). doi:10.1103/PhysRevE.47.R2983

    CAS  Google Scholar 

  16. Longinotti, M.P., Corti, H.R.: Diffusion of ferrocene methanol in supercooled aqueous solutions using cylindrical microelectrodes. Electrochem. Commun. 9, 1444–1450 (2006). doi:10.1016/j.elecom.2007.02.003

    Article  CAS  Google Scholar 

  17. Blackburn, F.R., Wang, C., Ediger, M.D.: Translational and rotational motion of probes in supercooled 1,3,5-tris(naphthyl)benzene. J. Phys. Chem. 100, 18249–18257 (1996). doi:10.1021/jp9622041

    Article  CAS  Google Scholar 

  18. Priasamy, N., Bicknese, S., Verkman, A.S.: Reversible photobleaching of fluorescein conjugates in air-atured viscous solutions: singlet and triplet state quenching by tryptophan. Photochem. Photobiol. 63, 265–271 (1996). doi:10.1111/j.1751-1097.1996.tb03023.x

    Article  Google Scholar 

  19. Miao, W., Ding, Z., Bard, A.J.: Solution viscosity effects on the heterogeneous electron transfer kinetics of ferrocenemethanol in dimethyl sulfoxide-water mixtures. J. Phys. Chem. 106, 1392–1398 (2002). doi:10.1021/jp013451u

    Article  CAS  Google Scholar 

  20. Hodgdon, J.A., Stillinger, F.H.: Stokes-Einstein violation in glass-forming liquids. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50, 2064–2068 (1994). doi:10.1103/PhysRevE.50.2064

    Google Scholar 

  21. Tarjus, G., Kivelson, D.: Breakdown of the Stokes-Einstein relation in supercooled liquids. J. Chem. Phys. 103, 3071–3073 (1995). doi:10.1063/1.470495

    Article  CAS  Google Scholar 

  22. Chang, I., Sillescu, H.: Heterogeneity at the glass transition: translational and rotacional self-diffusion. J. Phys. Chem. 101, 8794–8801 (1997). doi:10.1021/jp9640989

    CAS  Google Scholar 

  23. Cicerone, M.T., Wagner, P.A., Ediger, M.D.: Translational diffusion on heterogeneous lattices: a model for dynamics in glass forming materials. J. Phys. Chem. B 101, 8727–8734 (1997). doi:10.1021/jp970595t

    Article  CAS  Google Scholar 

  24. Xia, X., Wolynes, P.G.: Microscopic theory of heterogeneity and nonexponential relaxations in supercooled liquids. Phys. Rev. Lett. 86, 5526–5529 (2001). doi:10.1103/PhysRevLett.86.5526

    Article  CAS  Google Scholar 

  25. Xia, X., Wolynes, P.G.: Diffusion and the mesoscopic hydrodynamics of supercooled liquids. J. Phys. Chem. B 105, 6570–6573 (2001). doi:10.1021/jp004616m

    Article  CAS  Google Scholar 

  26. Garrahan, J.P., Chandler, D.: Coarse-grained microscopic model of glass formers. Proc. Natl. Acad. Sci. USA 100, 9710–9714 (2003). doi:10.1073/pnas.1233719100

    Article  CAS  Google Scholar 

  27. Miller, D.P., Conrad, P.B., Fucito, S., de Pablo, J.J., Corti, H.R.: Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride. J. Phys. Chem. B 104, 1041–10425 (2000) doi:10.1021/jp000730t

    Google Scholar 

  28. Longinotti, M.P., Mazzobre, M.F., Buera, M.P., Corti, H.R.: Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 2. Sugar crystallization rate and electrical conductivity behaviour. Phys. Chem. Chem. Phys. 4, 533–540 (2002). doi:10.1039/b107746e

    Article  CAS  Google Scholar 

  29. Spiro, M.: In: Rossiter, B.W., Hamilton, J.F. (eds.) Physical Methods of Chemistry, 5th edn. Interscience, New York (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Corti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corti, H.R., Frank, G.A. & Marconi, M.C. An Alternate Solution of Fluorescence Recovery Kinetics after Spot-Bleaching for Measuring Diffusion Coefficients. 2. Diffusion of Fluorescein in Aqueous Sucrose Solutions. J Solution Chem 37, 1593–1608 (2008). https://doi.org/10.1007/s10953-008-9329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9329-4

Keywords

Navigation