Skip to main content
Log in

Viscosity of Aqueous Solutions of Lithium, Sodium, Potassium, Rubidium and Caesium Cyclohexylsulfamates from 293.15 to 323.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The viscosities of aqueous solutions of lithium, sodium, potassium, rubidium and caesium cyclohexylsulfamates were measured at 293.15, 298.15, 303.15, 313.15 and 323.15 K. The relative viscosity data were analyzed and interpreted in terms of the Kaminsky equation, η r=1+Ac 1/2+Bc+Dc 2. The viscosity A-coefficient was calculated from the Falkenhagen-Dole theory. The viscosity B-coefficients are positive and relatively large. Their temperature coefficient B/ T is negative or near zero for lithium and sodium salts whereas for potassium, rubidium and caesium salts it is positive. The viscosity D-coefficient is positive. This was explained by the size of the ions, structural solute–solute interactions, hydrodynamic effect, and by higher terms of the long-range Debye-Hückel type of forces. From the viscosity B-coefficients the thermodynamic functions of activation of viscous flow were calculated. The limiting partial molar Gibbs energy of activation of viscous flow of the solute was divided into contributions due to solvent molecules and the solute in the transition state. The activation energy of the solvent molecules was calculated using the limiting Gibbs energy of activation for the conductance of the solute ions. The activation energy of the solvent molecules was then discussed in terms of the nature of the alkali-metal ions and their influence on the structure of water. The limiting activation entropy and enthalpy of the solute for activation of viscous flow were interpreted by ion-solvent bond formation or breaking in the transition state of the solvent. The hydration numbers of the investigated electrolytes were calculated from the specific viscosity of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Brien-Nabors, L., Gelardi, R.C.: Alternative sweeteners: an overview. In: Alternative Sweeteners, 2nd edn. Marcel Dekker, New York (1991)

    Google Scholar 

  2. Mathlouthi, M., Bressan, C., Portmann, M.O., Serghat, S.: Role of water. In: Mathlouthi, M., Kanters, J.A., Birch, G.G. (eds.) Sweet Taste Chemoreception, pp. 141–172. Elsevier, London & New York (1993)

    Google Scholar 

  3. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  4. Jenkins, H.D.B., Marcus, Y.: Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995)

    Article  CAS  Google Scholar 

  5. Feakins, D., Waghorne, W.E., Lawrence, K.G.: The viscosity and structure of solutions. A new theory of the Jones-Dole B-coefficient and the related activation parameters – application to aqueous-solutions. J. Chem. Soc. Faraday Trans. 82(1), 563–568 (1986)

    Article  CAS  Google Scholar 

  6. Feakins, D., Bates, F.M., Waghorne, W.E., Lawrence, K.G.: Relative viscosities and quasi-thermodynamics of solutions of tert-butyl alcohol in the methanol-water system – a different view of the alkyl water interaction. J. Chem. Soc. Faraday Trans. 89, 3381–3388 (1993)

    Article  CAS  Google Scholar 

  7. Feakins, D., Canning, F.M., Mullally, J.J., Waghorne, W.E.: The thermodynamics of solutions. Pure Appl. Chem. 61, 133–142 (1989)

    Article  CAS  Google Scholar 

  8. Rudan-Tasic, D., Klofutar, C., Horvat, J.: Viscosity of aqueous solutions of some alkali cyclohexylsulfamates at 25.0 °C. Food Chem. 86, 161–167 (2004)

    Article  CAS  Google Scholar 

  9. Cannon, M.R., Manning, R.E., Bell, J.D.: Viscosity measurement. The kinetic energy correction and a new viscometer. Anal. Chem. 32, 355–358 (1960)

    Article  CAS  Google Scholar 

  10. Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents, Physical Properties and Methods of Purification, 4th edn. Wiley, New York (1986)

    Google Scholar 

  11. Kaminsky, M.: The concentration and temperature dependence of the viscosity of aqueous solutions of strong electrolytes. III. KCl, K2SO4, MgCl2, BeSO4, and MgSO4 solutions. Z. Phys. Chem. 12, 206–231 (1957)

    CAS  Google Scholar 

  12. Klofutar, C., Horvat, J., Rudan-Tasic, D.: Apparent molar volume and apparent molar expansibility of rubidium, caesium, and ammonium cyclohexylsulfamate in aqueous solution. Monatsh. Chem. 137, 1151–1162 (2006)

    Article  CAS  Google Scholar 

  13. Klofutar, C., Rudan-Tasic, D.: Apparent molar volume and apparent molar expansibility of lithium, sodium, potassium, and tetramethylammonium cyclohexylsulfamate in aqueous solution. Monatsh. Chem. 136, 1727–1736 (2005)

    Article  CAS  Google Scholar 

  14. Falkenhagen, H., Dole, M.: Viscosity of electrolyte solutions and its significance to the Debye theory. Physik. Z. 30, 611–622 (1929)

    CAS  Google Scholar 

  15. Archer, D.G., Wang, P.M.: The dielectric-constant of water and Debye-Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411 (1990)

    Article  CAS  Google Scholar 

  16. Harned, R.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold, New York (1958)

    Google Scholar 

  17. Rudan-Tasič, D., Župec, T., Klofutar, C., Bešter-Rogač, M.: A conductometric study of aqueous solutions of some cyclohexylsulfamates. J. Solution Chem. 34, 631–644 (2005)

    Article  CAS  Google Scholar 

  18. Rudan-Tasič, D., Klofutar, C., Bešter-Rogač, M.: The electric conductivities of aqueous solutions of rubidium and cesium cyclohexylsulfamates, potassium acesulfame and sodium saccharin. Acta Chim. Slov. 53, 324–330 (2006)

    Google Scholar 

  19. Klofutar, C., Luci, M., Abramović, H.: The thermodynamics of dissociation of cyclohexylsulfamic acid in aqueous solution. Physiol. Chem. Phys. Med. NMR 31, 1–8 (1999)

    CAS  Google Scholar 

  20. Out, D.J.P., Los, J.M.: Viscosity of aqueous-solutions of univalent electrolytes from 5 to 95 °C. J. Solution Chem. 9, 19–35 (1980)

    Article  CAS  Google Scholar 

  21. Falkenhagen, H.: Bemerkung zur inneren Reibung starker Electrolyte in sehr verdünnte Lösungen. Physik. Z. 32, 365–369 (1931)

    CAS  Google Scholar 

  22. Falkenhagen, H.: The quantitative limiting law for the viscosity of strong binary electrolytes. Physik. Z. 32, 745–764 (1931)

    CAS  Google Scholar 

  23. Kaminsky, M.: Investigation of the interaction between ion and solvent by measurement of viscosity. Z. Naturforsch. 12a, 424–433 (1957)

    CAS  Google Scholar 

  24. Lencka, M.M., Anderko, A., Sanders, S.J., Young, R.D.: Modeling viscosity of multicomponent electrolyte solutions. Int. J. Thermophys. 19, 367–378 (1998)

    Article  CAS  Google Scholar 

  25. Desnoyers, J.E., Perron, G.: The viscosity of aqueous solutions of alkali and tetraalkylammonium halides at 25 °C. J. Solution Chem. 1, 199–212 (1972)

    Article  CAS  Google Scholar 

  26. Glasstone, S., Laidler,  K.J., Eyring, H.: The Theory of Rate Processes. McGraw-Hill, New York (1941)

    Google Scholar 

  27. Feakins, D., Freemantle, D.J., Lawrence, K.G.: Transition-state treatment of relative viscosity of electrolyte solutions – applications to aqueous, non-aqueous and methanol+water systems. J. Chem. Soc. Faraday Trans. 70, 795–806 (1974)

    Article  CAS  Google Scholar 

  28. Waghorne, W.E.: Viscosities of electrolyte solutions. Phil. Trans. R. Soc. London Ser. A 359, 1529–1543 (2001)

    Article  CAS  Google Scholar 

  29. Brummer, S.B., Hills, G.J.: Kinetics of ionic conductance. Part 1 – Energies of activation and the constant volume principle. J. Chem. Soc. Faraday Trans. 5, 1816–1822 (1961)

    Google Scholar 

  30. Hickey, K., Waghorne, W.E., Sacco, A.: Comparison of the activation free energies for viscous flow and for diffusion in dilute solutions, derivation of the expression for the effect of the solute on the activation free energy of diffusion of the solvent, and application to solutions of N,N-dimethylformamide in water, methanol, and acetonitrile. J. Phys. Chem. A 105, 1093–1096 (2001)

    Article  CAS  Google Scholar 

  31. Einstein, A.: A new determination of molecular dimensions. Ann. Physik 19, 289–306 (1911)

    Google Scholar 

  32. Einstein, A.: Berichtung zu meiner Arbeit, eine neue Bestimmung der molekul Dimensionen. Ann. Physik 34, 591–592 (1911)

    Article  CAS  Google Scholar 

  33. Linow, K.J.: Philipp, B.: The concentration dependency of viscosity – a new method for the discovery of solutes. Z. Phys. Chem. 265, 321–329 (1984)

    CAS  Google Scholar 

  34. Neilson, G.W., Mason, P.E., Ramos, S., Sullivan, D.: Neutron and X-ray scattering studies of hydration in aqueous solutions. Phil. Trans. R. Soc. Lond. Ser. A 359, 1575–1591 (2001)

    Article  CAS  Google Scholar 

  35. Lee, S.H., Rasaiah, J.C.: Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25 °C. J. Phys. Chem. 100, 1420–1425 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darja Rudan-Tasic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horvat, J., Bešter-Rogač, M., Klofutar, C. et al. Viscosity of Aqueous Solutions of Lithium, Sodium, Potassium, Rubidium and Caesium Cyclohexylsulfamates from 293.15 to 323.15 K. J Solution Chem 37, 1329–1342 (2008). https://doi.org/10.1007/s10953-008-9311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9311-1

Keywords

Navigation