Skip to main content
Log in

Environmental Mobility of Pu(IV) in the Presence of Ethylenediaminetetraacetic Acid: Myth or Reality?

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Ethylenediaminetetracetic acid (EDTA), which was co-disposed with Pu at several US Department of Energy sites, has been reported to enhance the solubility and transport of Pu. It is generally assumed that this enhanced transport of Pu in geologic environments is a result of complexation of Pu(IV) with EDTA. However, the fundamental basis for this assumption has never been fully explored. Whether EDTA can mobilize Pu(IV) in geologic environments is dependent on many factors, chief among them are not only the complexation constants of Pu with EDTA and dominant oxidation state and the nature of Pu solids, but also (1) the complexation constants of environmentally important metal ions (e.g., Fe, Al, Ca, Mg) that compete with Pu for EDTA and (2) EDTA interactions with the geomedia (e.g., adsorption, biodegradation) that reduce effective EDTA concentrations available for complexation. Extensive studies over a large range of pH values (1 to 14) and EDTA concentrations (0.0001 to 0.01 mol⋅L−1) as a function of time were conducted on the solubility of 2-line ferrihydrite (Fe(OH)3(s)), PuO2(am) in the presence of different concentrations of Ca ions, and mixtures of PuO2(am) and Fe(OH)3(s). The solubility data were interpreted using Pitzer’s ion-interaction approach to determine/validate the solubility product of Fe(OH)3(s), the complexation constants of Pu(IV)-EDTA and Fe(III)-EDTA, and to determine the effect of EDTA in solubilizing Pu(IV) from PuO2(am) in the presence of Fe(III) compounds and aqueous Ca concentrations. Predictions based on these extensive fundamental data show that environmental mobility of Pu as a result of Pu(IV)-EDTA complexation as reported/implied in the literature is a myth rather than the reality. The data also show that in geologic environments where Pu(III) and Pu(V) are stable, the EDTA complexes of these oxidation states may play an important role in Pu mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayers, J.A.: Decontamination of Nuclear Reactors and Equipment. Ronald Press Co., New York (1970)

    Google Scholar 

  2. Piciulo, P.L., Adams, J.W., Davis, M.S., Milian, L.W., Anderson, C.I.: Release of organic chelating agents from solidified decontamination wastes. Springfield (1986)

  3. McFadden, K.M.: Organic components of nuclear wastes and their potential for altering radionuclide distribution when released to soil. Pacific Northwest National Laboratory Richland (1980)

  4. Freeman-Pollard, J.R., Caggiano, J.A., Trent, S.J.: Engineering evaluation of the GAO-RCED-89-157, Tank 241-T-106 vadose zone investigations (1994)

  5. Cleveland, J.M., Rees, T.F.: Characterization of plutonium in Maxey Flats radioactive trench leachates. Science 212, 1506–1509 (1981)

    Article  CAS  Google Scholar 

  6. Riley, R.G., Zachara, J.M., Wobber, F.J.: Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. National Technical Information Service, US Department of Commerce, Springfield (1992)

  7. Boukhalfa, H., Reilly, S.D., Smith, W.H., Neu, M.: EDTA and mixed-ligand complexes of tetravalent and trivalent plutonium. Inorg. Chem. 43, 5816–5823 (2004)

    Article  CAS  Google Scholar 

  8. Cauchetier, P., Guichard, C.: Electrochemical and spectrophotometric study of the complexes of plutonium ions with EDTA. I. Plutonium(III) and (IV). Radiochim. Acta 19, 137–146 (1973)

    CAS  Google Scholar 

  9. Foreman, J.K., Smith, T.D.: The nature and stability of the complex ions formed ter-, quadri-, and sexa-valent plutonium ions with ethylenediaminetetraacetic acid. Part I. pH titrations and ion-exchange studies. J. Chem. Soc. 2, 1752–1758 (1957)

    Article  Google Scholar 

  10. Foreman, J.K., Smith, T.D.: The nature and stability of the complex ions formed by ter-, quadri-, and sexa-valent plutonium ions with ethylenediamineteraacetatic acid (EDTA). Part II. Spectroscopic studies. J. Chem. Soc. 2, 1758–1762 (1957)

    Article  Google Scholar 

  11. AlMahamid, I., Becraft, K.A., Hakem, N.L., Gatti, R.C., Nitsche, H.: Stability of various plutonium valence states in the presence of NTA and EDTA. Radiochim. Acta 74, 129–134 (1996)

    CAS  Google Scholar 

  12. Reed, D.T., Wygmans, D.G., Aase, S.B., Banaszak, J.E.: Reduction of Np(VI) and Pu(IV) by organic chelating agents. Radiochim. Acta 82, 109–114 (1998)

    CAS  Google Scholar 

  13. Rusin, P.A., Quintana, L., Brainard, J.R., Strietelmeir, B.A., Trait, C.D., Ekberg, S.A., Palmer, P.D., Newton, T.W., Clark, D.L.: Solubilization of plutonium hydrous oxide by iron-reducing bacteria. Environ. Sci. Technol. 28, 1686–1690 (1994)

    Article  CAS  Google Scholar 

  14. Rai, D., Gorby, Y.A., Fredrickson, J.K., Moore, D.A., Yui, M.: Reductive dissolution of PuO2(am): The effect of Fe(II) and hydroquinone. J. Solution Chem. 31, 433–453 (2002)

    Article  CAS  Google Scholar 

  15. Hummel, W., Anderegg, G., Puigdomenech, I., Rao, L., Tochiyama, O.: Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni, and Zr with Selected Organic Ligands. Elsevier, Amsterdam (2005)

    Google Scholar 

  16. Mikhailov, V.A.: Solubility of plutonium arylarsonates. Russ. J. Inorg. Chem. 14, 1119–1122 (1969)

    Google Scholar 

  17. Rai, D., Bolton, H.J., Moore, D.A., Hess, N.J., Choppin, G.R.: Thermodynamic model for the solubility of PuO2(am) in the aqueous Na+-H+-OH-Cl-H2O-ethylenediaminetetraacetate system. Radiochim. Acta 89, 67–74 (2001)

    Article  CAS  Google Scholar 

  18. Guillaumont, R., Fanghanel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium. Elsevier, Amsterdam (2003)

    Google Scholar 

  19. Anderegg, G.: Critical Survey of Stability Constants of EDTA Complexes. IUPAC Chemical Data Series, vol. 14. Pergamon, Elmsford (1977)

    Google Scholar 

  20. Smith, R.M., Martell, A.E., Motekaitis, R.J.: NIST critically selected stability constants of metal complexes database, Version 6.0 for Windows. NIST standard reference database 46. US Department of Commerce, Gaithersburg (2001)

  21. Schwertmann, U., Cornell, R.M.: Iron Oxides in the Laboratory. Preparation and Characterization. VCH, New York (1991)

    Google Scholar 

  22. Schramke, J.A., Rai, D., Choppin, G.R., Fulton, R.W.: Determination of aqueous plutonium oxidation states by solvent extraction. J. Radioanal. Nucl. Chem. 130, 333–346 (1989)

    Article  CAS  Google Scholar 

  23. Cleveland, J.M.: The Chemistry of Plutonium. Gordon and Breach, New York (1970)

    Google Scholar 

  24. Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, pp. 75–153. CRC Press, Boca Raton (1991)

    Google Scholar 

  25. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  26. Felmy, A.R., Weare, J.H.: The prediction of borate mineral equilibria in natural waters: application to Searles Lake, California. Geochim. Cosmochim. Acta 50, 2771–2783 (1986)

    Article  CAS  Google Scholar 

  27. Felmy, A.R., Rai, D., Schramke, J.A., Ryan, J.L.: The solubility of Pu(OH)3 in dilute solution and in high-ionic-strength chloride brines. Radiochim. Acta 48, 29–35 (1989)

    CAS  Google Scholar 

  28. Felmy, A.R., Mason, M.J.: An aqueous thermodynamic model for the complexation of sodium and strontium with organic chelates valid to high ionic strength. I. Ethylenedinitrilotetraacetic acid (EDTA). J. Solution Chem. 32, 283–300 (2003)

    Article  CAS  Google Scholar 

  29. Pokrovsky, O.S., Bronikowski, M.G., Moore, R.C., Choppin, G.R.: Interaction of neptunyl(V) and U(VI) with EDTA in NaCl media: Experimental study and Pitzer modeling. Radiochim. Acta 80, 23–29 (1998)

    CAS  Google Scholar 

  30. Sterner, S.M., Felmy, A.R., Rustad, J.R., Pitzer, K.S.: Thermodynamic analysis of aqueous solutions using INSIGHT. Pacific Northwest National Laboratory Richland (1997)

  31. Rai, D., Hess, N.J., Rao, L., Zhang, Z., Felmy, A.R., Moore, D.A., Clark, S.B., Lumetta, G.J.: Thermodynamic model for the solubility of Cr(OH)3(am) in concentrated NaOH and NaOH-NaNO3 solutions. J. Solution Chem. 31, 343–367 (2002)

    Article  CAS  Google Scholar 

  32. Rai, D., Moore, D.A., Hess, N.J., Rao, L., Clark, C.B.: Chromium(III) hydroxide solubility in the aqueous Na+-OH-H2PO 4 -HPO 2−4 -PO 3−4 -H2O system: A thermodynamic model. J. Solution Chem. 33, 1213–1242 (2004)

    Article  CAS  Google Scholar 

  33. Rai, D., Moore, D.A., Hess, N.J., Rosso, K.M., Rao, L., Heald, S.M.: Chromium(III) hydroxide solubility in the aqueous K+-H+-OH-CO2- HCO 3 - CO 2−3 -H2O system: a thermodynamic model. J. Solution Chem. 36, 1261–1285 (2007)

    Article  CAS  Google Scholar 

  34. Eary, L.E., Rai, D.: Chromate removal from aqueous wastes by reduction with ferrous iron. Environ. Sci. Technol. 22, 972–977 (1988)

    Article  CAS  Google Scholar 

  35. Neck, V., Altmaier, M., Seibert, A., Yun, J.I., Marquardt, C.M., Fanghanel, T.: Solubility and redox reactions of Pu(IV) hydrous oxide: Evidence for the formation of PuO2+x (s, hyd). Radiochim. Acta 95, 193–207 (2007)

    Article  CAS  Google Scholar 

  36. Parker, V.B., Khodakovskii, I.L.: Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and the compounds of iron. J. Phys. Chem. Ref. Data 24, 1699–1745 (1995)

    Article  CAS  Google Scholar 

  37. Harvie, C.E., Moller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO2-H2O system to high ionic strengths at 25 degrees C. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Article  CAS  Google Scholar 

  38. Wesolowski, D.J.: Aluminum speciation and equilibria in aqueous solution: I. The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100 degrees C. Geochim. Cosmochim. Acta 56, 1065–1091 (1992)

    Article  CAS  Google Scholar 

  39. Becke, A.D.: A new mixing of Hartree-Fock and local density functional theories. J. Chem. Phys. 98, 1372–1377 (1993)

    Article  CAS  Google Scholar 

  40. Cao, X.Y., Dolg, M.: Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems. Coord. Chem. Rev. 250(7–8), 900–910 (2006)

    Article  CAS  Google Scholar 

  41. Binkley, J.S., Pople, J.A., Hehre, W.J.: Self-consistent molecular orbital methods .21. Small split-valence basis sets for 1st row elements. J. Am. Chem. Soc. 102, 939–947 (1980)

    Article  CAS  Google Scholar 

  42. Fackler, J.P., Kristine, F.J., Mazany, M.A., Moyer, T.J., Shepherd, R.E.: The absence of a titanyl oxygen in the Ti(IV)-EDTA4− complex: [Ti(EDTA)(H2O)]. Inorg. Chem. 24, 1857–1860 (1985)

    Article  CAS  Google Scholar 

  43. Apra, E., Windus, T.L., Straatsma, T.P., Bylaska, E.J., de Jong, W., Kowalski, K., Hackler, M.T., Hirata, S., Valiev, M., Hackler, M.T., Zhao, Y., Harrison, R.J., Dupuis, M., Smith, D.M.A., Nieplocha, J., Tipparaju, V., Krishnan, M., Auer, A.A., Brown, E., Cisneros, G., Fann, G.I., Fruchtl, H., Garza, J., Hirao, K., Kendall, R., Nichols, J.A., Tsemekhman, K., Wolinski, K., Anchell, J., Bernholdt, D., Borowski, P., Clark, T., Clerc, D., Dachsel, H., Deegan, M., Dyall, K., Elwood, D., Glendening, E., Gutowski, M., Hess, A., Jaffe, J., Johnson, B., Ju, J., Kobayashi, H., Kutteh, R., Lin, Z., Littlefield, R., Long, X., Meng, B., Nakajima, T., Niu, S., Pollack, L., Rosing, M., Sandrone, G., Stave, M., Taylor, H., Thomas, G., van Lenthe, J., Wong, A., Zhang, Z.: NWChem: A computational chemistry package designed to run on high-performance parallel supercomputers, version 4.7. Pacific Northwest National Laboratory, Richland (2005)

  44. Allen, P.G., Veirs, D.K., Conradson, S.D., Smith, C.A., Marsh, S.F.: Characterization of aqueous plutonium(IV) nitrate complexes by extended x-ray absorption fine structure spectroscopy. Inorg. Chem. 35, 2841–2845 (1996)

    Article  CAS  Google Scholar 

  45. Clark, D.L., Conradson, S.D., Keogh, D.W., Palmer, P.D., Scott, B.L., Tait, C.D.: Identification of the limiting species in the plutonium(IV) carbonate system. Solid state and solution molecular structure of the [Pu(CO3)5]6− ion. Inorg. Chem. 37, 2893–2899 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanpat Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, D., Moore, D.A., Rosso, K.M. et al. Environmental Mobility of Pu(IV) in the Presence of Ethylenediaminetetraacetic Acid: Myth or Reality?. J Solution Chem 37, 957–986 (2008). https://doi.org/10.1007/s10953-008-9282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9282-2

Keywords

Navigation