Skip to main content
Log in

The Dissociation Constant of Antimonic Acid at 10–40 °C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The hydrolytic behavior of antimonic acid, Sb(OH) o5 , was experimentally investigated, at fixed temperatures within the range 10–40 °C, by both titration of dilute Na-antimonate solutions with HClO4 and single-point pH measurements of diluted Sb(OH) o5 solutions. The thermodynamic constants, K a, for the reaction:

$$\mathrm{Sb(OH)}_{5}^{\mathrm{o}}+\mathrm{H}_{2}\mathrm{O}\,\rightleftharpoons\,\mathrm{Sb(OH)}_{6}^{-}+\mathrm{H}^{+}$$

were derived at different controlled temperatures, based on pH measurements, applying suitable mass and electrical balances and correcting the concentrations of ionic species for medium effects. From the resulting log 10 K a values, those of the corresponding isocoulombic equilibrium reaction:

$$\mathrm{Sb(OH)}_{5}^{\mathrm{o}}+\mathrm{OH}^{-}\,\rightleftharpoons\,\mathrm{Sb(OH)}_{6}^{-}$$

were computed and used to derive its thermodynamic properties. These were finally combined with the corresponding thermodynamic properties of the water association reaction, to obtain robust estimations of ΔG or , ΔS or and ΔH or for the ionogenic reaction. These are the first thermodynamic data at temperatures different from 25 °C for the ionization reaction of Sb(OH) o5 . The results of the present work confirm that Sb(OH) o5 is a moderately weak and monoprotic acid with a pK a of 2.848 at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baes, C.F., Mesmer, R.E.: The Hydrolysis of Cations. Wiley, New York (1976)

    Google Scholar 

  2. Lefebvre, J., Maria, H.: Étude des équilibres dans les solutions récentes de polyantimoniates. C. R. Acad. Sci. Paris 256, 3121–3124 (1963)

    CAS  Google Scholar 

  3. Pauling, L.: The formulas of antimonic acid and the antimonates. J. Am. Chem. Soc. 55, 1895–1900 (1933)

    Article  CAS  Google Scholar 

  4. Gayer, K.H., Garrett, A.B.: The equilibria of antimonious oxide (rhombic) in dilute solutions of hydrochloric acid and sodium hydroxide at 25 °C. J. Am. Chem. Soc. 74, 2353–2354 (1952)

    Article  CAS  Google Scholar 

  5. Mishra, S.K., Gupta, Y.K.: Spectrophotometric study of the hydrolytic equilibrium of Sb(III) in aqueous perchloric acid solution. Indian J. Chem. 6, 757–758 (1968)

    CAS  Google Scholar 

  6. Ahrland, S., Bovin, J.: The complex formation of antimony(III) in perchloric acid and nitric acid solutions. A solubility study. Acta Chem. Scand. A 28, 1089–1100 (1974)

    Article  Google Scholar 

  7. Vasil’ev, V.P., Shorokhova, V.I.: Determination of the standard thermodynamic characteristics of the antimonyl ion SbO+ and antimony oxide by a potentiometric method. Electrokhimiya 8, 185–190 (1972)

    CAS  Google Scholar 

  8. Vasil’ev, V.P., Shorokhova, V.I.: Determination of the thermodynamic characteristics of antimony(III) in alkaline solutions by a solubility method. Russ. J. Inorg. Chem. 18, 161–164 (1973)

    Google Scholar 

  9. Popova, M.Ya., Khodakovsky, I.L., Ozerova, N.A.: Experimental determination of the thermodynamic properties of hydroxo- and hydroxofluoride complexes of antimony at temperatures up to 200 °C. Geokhimiya 6, 835–843 (1975)

    Google Scholar 

  10. Zotov, A.V., Shikina, N.D., Akinfiev, N.N.: Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3(aq) at hydrothermal conditions. Geochim. Cosmochim. Acta 67, 1821–1836 (2003)

    Article  CAS  Google Scholar 

  11. Zakaznova-Herzog, V.P., Seward, T.M.: Antimonous acid protonation/deprotonation equilibria in hydrothermal solutions to 300 °C. Geochim. Cosmochim. Acta 70, 2298–2310 (2006)

    Article  CAS  Google Scholar 

  12. Smith, R.M., Martell, A.E.: Critical Stability Constants, vol. 4: Inorganic Complexes. Plenum, New York (1976)

    Google Scholar 

  13. Lothenbach, B., Ochs, M., Wanner, H., Yui, M.: Thermodynamic data for the speciation and solubility of Pd, Pb, Sn, Sb, Nb and Bi in aqueous solution. JNC Report TN8400 99-011 (1999)

  14. Filella, M., May, P.M.: Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters. Geochim. Cosmochim. Acta 67, 4013–4031 (2003)

    Article  CAS  Google Scholar 

  15. Nekrassov, B.: Chimie Minérale. Ed. de Moscou, Moscow (1969)

    Google Scholar 

  16. Silvestroni, P.: Fondamenti di Chimica. Masson, Milano (1997)

    Google Scholar 

  17. Slade, R.C.T., Gillian, P.H., Ramanan, A., Prince, E.: Structure and proton conduction in pyrochlore-type antimonic acid: a neutron diffraction study. Solid State Ion. 92, 171–181 (1996)

    Article  CAS  Google Scholar 

  18. England, W.A., Cross, M.G., Hamnett, A., Wiseman, P.J., Goodenough, J.B.: Fast proton conduction in inorganic ion-exchange compounds. Solid State Ion. 1, 231–249 (1980)

    Article  CAS  Google Scholar 

  19. Jain, D.V.S., Banerjee, A.K.: On the structure of antimonates. J. Inorg. Nucl. Chem. 19, 177–179 (1961)

    Article  CAS  Google Scholar 

  20. Gate, S.H., Richardson, E.: Some studies on antimonic acid. I. Some properties, effect of H2O2, and reaction with polyhydroxy compounds. J. Inorg. Nucl. Chem. 23, 257–263 (1961)

    Article  CAS  Google Scholar 

  21. King, E.J.: Acid-base equilibria. In: Topics 15: Equilibrium Properties of Electrolyte Solutions. The International Encyclopedia of Physical Chemistry and Chemical Physics, vol. 4. Pergamon, New York (1965)

    Google Scholar 

  22. Davison, W., Woof, C.: Performance tests for the measurement of pH with glass electrodes in low ionic strength solutions including natural waters. Anal. Chem. 57, 2567–2570 (1985)

    Article  CAS  Google Scholar 

  23. Cheng, K.L., Zhu, D.-M.: On calibration of pH meters. Sensors 5, 209–219 (2005)

    Article  CAS  Google Scholar 

  24. Abe, M., Ito, T.: Synthetic inorganic ion-exchange materials. X. Preparation and properties of so-called antimonic(V) acid. Bull. Chem. Soc. Jpn. 41, 333–342 (1968)

    Article  CAS  Google Scholar 

  25. Willis, S.B., Neumann, H.M.: Hydrolysis and nucleophilic substitution of the hexachloro-antimonate(V) ion in the pH range 2–12. J. Am. Chem. Soc. 91, 2924–2928 (1969)

    Article  CAS  Google Scholar 

  26. Matsuo, T., Kobayashi, K., Tago, K.: Estimation of the solubility dependence of aluminate salts of alkali metals on ion radii of alkali metals by LDF molecular orbital calculations. J. Phys. Chem. 100, 6531–6542 (1996)

    Article  CAS  Google Scholar 

  27. Travers, J.G., McCurdy, K.G., Dolman, D., Hepler, L.G.: Glass-electrode measurements over a wide range of temperatures: the ionization constants (5–90 °C) and thermodynamics of ionization of aqueous benzoic acid. J. Solution Chem. 4, 267–274 (1975)

    Article  CAS  Google Scholar 

  28. Martell, A.E., Hancock, R.D.: Metal Complexes in Aqueous Solutions. Plenum, New York (1996), 253 pp

    Google Scholar 

  29. Bates, R.G.: Determination of pH: Theory and Practice, 2nd edn. Wiley, New York (1973)

    Google Scholar 

  30. Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures, I: summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci. 274, 1089–1198 (1974)

    CAS  Google Scholar 

  31. Knauss, K.G., Wolery, T.J., Jackson, K.J.: Reply to comment by R.E. Mesmer on “A new approach to measuring pH in brines and other concentrated electrolytes”. Geochim. Cosmochim. Acta 55, 1177–1179 (1991)

    Article  CAS  Google Scholar 

  32. Wolery, T.W., Jarek, R.L.: Software user’s manual. EQ3/6, Version 8.0. Sandia National Laboratories, U.S. Dept. of Energy Report (2003)

  33. Lindsay, W.T. Jr.: Estimation of concentration quotients for ionic equilibria in high temperature water: the model substance approach. In: 41st Int. Water Conf. pp. 284–294 (1980)

  34. Johnson, J.W., Oelkers, E.H., Helgeson, H.C.: SUPCRT 92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000 °C. Comput. Geosci. 18, 899–947 (1992)

    Article  Google Scholar 

  35. Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 C. Geochim. Cosmochim. Acta 52, 2009–2036 (1988)

    Article  CAS  Google Scholar 

  36. Shock, E.L., Helgeson, H.C., Sverjensky, D.A.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 53, 2157–2183 (1989)

    Article  CAS  Google Scholar 

  37. Shock, E.L., Sassani, D.C., Willis, M., Sverjensky, D.A.: Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61, 907–950 (1997)

    Article  CAS  Google Scholar 

  38. Pokrovski, G., Gout, R., Schott, J., Zotov, A., Harrichoury, J.-C.: Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochim. Cosmochim. Acta 60, 737–749 (1996)

    Article  CAS  Google Scholar 

  39. Pokrovski, G., Zakirov, I., Roux, J., Testemale, D., Hazemann, J.-L., Bychkov, A.Y., Golikova, G.V.: Experimental study of arsenic speciation in vapor phase to 500 °C: implications for As transport and fractionation in low-density crustal fluids and volcanic gases. Geochim. Cosmochim. Acta 66, 3453–3480 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Marini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Accornero, M., Marini, L. & Lelli, M. The Dissociation Constant of Antimonic Acid at 10–40 °C. J Solution Chem 37, 785–800 (2008). https://doi.org/10.1007/s10953-008-9280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9280-4

Keywords

Navigation