Skip to main content
Log in

The Examination of the Activity Coefficients of Cu(II) Complexes with OH and Cl in NaClO4 Using Pitzer Equations: Application to Other Divalent Cations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The stability constants for the hydrolysis of Cu(II) and formation of chloride complexes in NaClO4 solution, at 25 °C, have been examined using the Pitzer equations. The calculated activity coefficients of CuOH+, Cu(OH)2, Cu2(OH)3+, Cu2(OH) 2+2 , CuCl+ and CuCl2 have been used to determine the Pitzer parameter (β (0) i , β (1) i , and C i ) for these complexes. These parameters yield values for the hydrolysis constants (log 10 β *1 , log 10 β *2 , log 10 β *2,1 and log 10 β *2,2 ) and the formation of the chloride complexes (log 10 β *CuCl and \(\log_{10}\beta_{\mathrm{CuCl}_{2}}^{\mathrm{*}})\) that agree with the experimental measurements, respectively to ±0.01,±0.02,±0.03,±0.06,±0.03 and ±0.07.

The stability constants for the hydrolysis and chloride complexes of Cu(II) were found to be related to those of other divalent metals over a wide range of ionic strength. This has allowed us to use the calculated Pitzer parameters for copper complexes to model the stability constants and activity coefficients of hydroxide and chloride complexes of other divalent metals. The applicability of the Pitzer Cu(II) model to the ionic strength dependence of hydrolysis of zinc and cadmium is presented. The resulting thermodynamic hydroxide and chloride constants for zinc are \(\log_{10}\beta_{\mathrm{ZnOH}^{+}}=-9.04\pm0.04\) and \(\log_{10}\beta_{\mathrm{Zn(OH)}_{2}}=-16.90\pm0.02\) . For cadmium the thermodynamic hydrolysis constants are \(\log_{10}\beta_{\mathrm{CdOH}^{+}}=-10.24\pm0.05\) and \(\log_{10}\beta_{\mathrm{Cd(OH)}_{2}}=-20.42\pm0.07\) . The Cu(II) model allows one to determine the stability of other divalent metal complexes over a wide range of concentration when little experimental data are available. More reliable stepwise stability constants for divalent metals are needed to test the linearity found for the chloro complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, P.G.C.: Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier, A., Turner, D.R. (eds.) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, New York (1995)

  2. Sunda, W., Guillard, R.R.L.: The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Mar. Res. 134, 511–529 (1976)

    Google Scholar 

  3. Morel, F.M.M., Morel-Laurens, N.M.L.: Trace metals and plankton in the oceans. Facts and speculations. In: Wong, C.S., Boyle, E., Bruland, K.W., Burton, J.D., Goldberg, E.D. (eds.) Trace Metals in Sea Water. NATO Conference Series IV, Marine Sciences, pp. 841–869. Plenum Press, New York (1983)

    Google Scholar 

  4. Brand, L.E., Sunda, W.G., Guillard, R.R.L.: Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96, 225–250 (1986)

    Article  CAS  Google Scholar 

  5. Verweij, W.: Speciation and bioavailability of copper in lake Tjeukemeer. Ph.D. thesis, University of Wageningen, The Netherlands (1991), 143 pp

  6. Blust, R., Fontaine, A., Declair, W.: Effect of hydrogen ions and inorganic complexing on the uptake of copper by the brine shrimp Artemia franciscana. Mar. Ecol. Prog. Ser. 76, 273–282 (1991)

    Article  CAS  Google Scholar 

  7. Seritti, A., Pellegrini, D., Morelli, E., Barghigiani, C., Ferrara, R.: Copper complexing capacity of phytoplanktonic cell exudates. Mar. Chem. 18, 351–357 (1986)

    Article  CAS  Google Scholar 

  8. Brown, L.N., Robinson, M.G., Hall, B.D.: Mechanisms for copper tolerance in Amhora coffeaeformis—internal and external binding. Mar. Biol. 97, 581–586 (1988)

    Article  CAS  Google Scholar 

  9. Zhou, X., Slauenwhite, D.E., Pett, R.J., Wangersky, P.J.: Production of copper-complexing organic ligands during a diatom bloom: tower tank and batch-culture experiments. Mar. Chem. 27, 19–30 (1989)

    Article  CAS  Google Scholar 

  10. Zhou, X., Wangersky, P.J.: Production of copper-complexing organic ligands by the marine diatom Phaeodactylum triconutum in a cage culture turbidostat. Mar. Chem. 26, 239–259 (1989)

    Article  CAS  Google Scholar 

  11. Gonzalez-Davila, M., Santana-Casiano, J.M., Laglera, L.M.: Copper adsorption in diatom cultures. Mar. Chem. 70, 161–170 (2000)

    Article  CAS  Google Scholar 

  12. Moffett, J.W., Zika, R.G.: Oxidation kinetics of Cu(I) in seawater: implications for its existence in the marine environment. Mar. Chem. 13, 239–251 (1983)

    Article  CAS  Google Scholar 

  13. Moffett, J.W., Zika, R.G.: Reduction kinetics of hydrogen peroxide with copper and iron in seawater. Environ. Sci. Technol. 21, 804–810 (1987)

    Article  CAS  Google Scholar 

  14. Zafiriou, O.C.: Marine organic photochemistry previewed. Mar. Chem. 5, 497–522 (1977)

    Article  CAS  Google Scholar 

  15. Zika, R.G.: Marine organic photochemistry. In: Duursma, E.K., Dawson, R. (eds.) Marine Organic Chemistry, pp. 299–325. Elsevier, Amsterdam (1981)

    Google Scholar 

  16. Millero, F.J.: The effect of ionic interactions on the oxidation of metals in natural waters. Geochim. Cosmochim. Acta 49, 547–553 (1985)

    Article  CAS  Google Scholar 

  17. Sharma, V.K., Millero, F.J.: Effect of ionic interactions on the rates of oxidation of Cu(I) with O2 in natural waters. Mar. Chem. 25, 141–161 (1988)

    Article  CAS  Google Scholar 

  18. Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, pp. 75–153. CRC Press, Boca Raton (1991)

    Google Scholar 

  19. Powell, K.J., Brown, P.L., Byrne, B.H., Gajda, T., Hefter, G., Sjöberg, S., Wanner, H.: Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+-OH, Cl, SO 2−4 , and PO 3−4 systems. Pure Appl. Chem. 79, 895–950 (2007)

    Article  CAS  Google Scholar 

  20. Millero, F.J., Pierrot, D.: A chemical equilibrium model for natural waters. Aquat. Geochem. 4, 153–199 (1998)

    Article  CAS  Google Scholar 

  21. Kim, H.-T., Frederick, W.J.: Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters. J. Chem. Eng. Data 33, 177–184 (1988)

    Article  CAS  Google Scholar 

  22. Møller, N.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988)

    Article  Google Scholar 

  23. Baes, C.F., Mesmer, R.E.: The Hydrolysis of Cations, pp. 267–272. Wiley-Interscience, New York (1976)

    Google Scholar 

  24. Millero, F.J.: Use of models to determine ionic interactions in natural waters. Thalass. Jugosl. 18, 253–291 (1982)

    Google Scholar 

  25. Millero, F.J., Schreiber, D.R.: Use of the pairing model to estimate activity coefficients of the ionic components of natural waters. Am. J. Sci. 282, 1508–1540 (1982)

    CAS  Google Scholar 

  26. Millero, F.J., Hawke, D.J.: Ionic interactions of divalent metals in natural waters. Mar. Chem. 40, 19–48 (1992)

    Article  CAS  Google Scholar 

  27. Millero, F.J.: Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta 56, 3123–3132 (1992)

    Article  CAS  Google Scholar 

  28. Smith, R.M., Martell, A.E.: Critical Stability Constants, Vol. 4, Inorganic Complexes, p. 257. Plenum Press, New York (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Millero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santana-Casiano, J.M., González-Dávila, M. & Millero, F.J. The Examination of the Activity Coefficients of Cu(II) Complexes with OH and Cl in NaClO4 Using Pitzer Equations: Application to Other Divalent Cations. J Solution Chem 37, 749–762 (2008). https://doi.org/10.1007/s10953-008-9274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9274-2

Keywords

Navigation