Skip to main content
Log in

Modeling of Protonation Constants of Linear Aliphatic Dicarboxylates Containing -S-Groups in Aqueous Chloride Salt Solutions, at Different Ionic Strengths, Using the SIT and Pitzer Equations and Empirical Relationships

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The protonation constants of ethylenedithiodiacetic, dithiodipropionic and dithiodibutyric acids were obtained from potentiometric measurements in NaCl(aq) (I≤5 mol⋅L−1) and (CH3)4NCl(aq) (I≤3 mol⋅L−1) at t=25 °C. Their dependences on ionic strength were modeled by the SIT and Pitzer approaches. The activity coefficients of the neutral species were obtained by solubility measurements. The literature values of the protonation constants of (HOOC)-(CH2) n -S-(CH2) n -(COOH) (n=1 to 3) and (HOOC)-(CH2)-S-(CH2) n -S-(CH2)-(COOH) (n=0 to 5) in NaCl(aq) and KCl(aq) (I≤3 mol⋅L−1) at 18 °C were also analyzed using the above approaches. Both the log 10 K H i and interaction parameter values follow simple linear trends as a function of certain structural characteristics of the ligands. Examples of modeling these trends are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. May, P.M., Murray, K.: Database of chemical reactions designed to achieve thermodynamic consistency automatically. J. Chem. Eng. Data 46, 1035–1040 (2001)

    Article  CAS  Google Scholar 

  2. Martell, A.E., Smith, R.M., Motekaitis, R.J.: NIST critically selected stability constants of metal complexes. PC-based database. National Institute of Standard and Technology, Gaithersburg, MD 20899 (2004)

  3. Pettit, L.D., Powell, K.S.: Stability Constants Data Base. Academic Software, Yorks (2000)

    Google Scholar 

  4. Guggenheim, E.A., Turgeon, J.C.: Specific interaction of ions. Trans. Faraday Soc. 51, 747–761 (1955)

    Article  CAS  Google Scholar 

  5. Scatchard, G.: Concentrated solutions of strong electrolytes. Chem. Rev. 19, 309–327 (1936)

    Article  CAS  Google Scholar 

  6. Brönsted, J.N.: Studies on solubility. IV. The principle of the specific interaction of ions. J. Am. Chem. Soc. 44, 877–898 (1922)

    Article  Google Scholar 

  7. Biedermann, G.: Ionic media. In: Dahlem Workshop on the Nature of Seawater, pp. 339–362. Dahlem Konferenzen, Berlin (1975)

  8. Ciavatta, L.: The specific interaction theory in the evaluating ionic equilibria. Ann. Chim. (Rome) 70, 551–562 (1980)

    CAS  Google Scholar 

  9. Ciavatta, L.: The specific interaction theory in equilibrium analysis. Some empirical rules for estimating interaction coefficients of metal ion complexes. Ann. Chim. (Rome) 80, 255–263 (1990)

    CAS  Google Scholar 

  10. Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton (1991)

    Google Scholar 

  11. Millero, F.J.: Physical Chemistry of Natural Waters. Wiley-Interscience Series in Geochemistry. Wiley, New York (2001)

    Google Scholar 

  12. Millero, F.J.: The estimation of the pK *HA of acids in seawater using Pitzer’s equations. Geochim. Cosmochim. Acta 47, 2121–2129 (1983)

    Article  CAS  Google Scholar 

  13. Millero, F.J., Hershey, J.P., Fernandez, M.: The pK * of TRISH+ in Na-K-Mg-Ca-Cl-SO4 brines—pH scales. Geochim. Cosmochim. Acta 51, 707–711 (1987)

    Article  CAS  Google Scholar 

  14. Hershey, J.P., Plese, T., Millero, F.J.: The pK *1 for the dissociation of H2S in various ionic media. Geochim. Cosmochim. Acta 52, 2047–2051 (1988)

    Article  CAS  Google Scholar 

  15. Roy, R.N., Roy, L.N., Lawson, M., Vogel, K.M., Moore, C.P., Davis, W., Millero, F.J.: Thermodynamics of the dissociation of boric acid at S=35 from 0 to 55 °C. Mar. Chem. 44, 243–248 (1993)

    Article  CAS  Google Scholar 

  16. Roy, R.N., Vogel, K.M., Moore, C.P., Pearson, T., Roy, L.N., Johnson, D.A., Millero, F.J., Campbell, D.M.: The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45 °C. Mar. Chem. 44, 249–267 (1993)

    Article  CAS  Google Scholar 

  17. De Robertis, A., De Stefano, C., Foti, C.: Medium effects on the protonation of carboxylic acids at different temperatures. J. Chem. Eng. Data 44, 262–270 (1999)

    Article  Google Scholar 

  18. De Robertis, A., De Stefano, C., Foti, C., Gianguzza, A., Piazzese, D., Sammartano, S.: Protonation constants and association of polycarboxylic ligands with the major components of seawater. J. Chem. Eng. Data 45, 996–1000 (2000)

    Article  Google Scholar 

  19. Crea, F., De Robertis, A., Sammartano, S.: Medium and alkyl chain effects on the protonation of dicarboxylates in NaCl(aq) and Et4NI(aq) at 25 °C. J. Solution Chem. 33, 497–526 (2004)

    Google Scholar 

  20. De Robertis, A., Foti, C., Giuffrè, O., Sammartano, S.: Dependence on ionic strength of polyamines protonation in NaCl aqueous solution. J. Chem. Eng. Data 46, 1425–1435 (2001)

    Article  Google Scholar 

  21. Sharma, V.K., Casteran, F., Millero, F.J., De Stefano, C.: Dissociation constants of protonated cysteine species in NaCl media. J. Solution Chem. 10, 783–792 (2002)

    Article  Google Scholar 

  22. Sharma, V.K., Zinger, A., Millero, F.J., De Stefano, C.: Dissociation constants of protonated methionine species in NaCl media. Biophys. Chem. J. 105, 79–87 (2003)

    Article  CAS  Google Scholar 

  23. Crea, F., De Stefano, C., Sharma, V.K., Millero, F.J.: Dissociation constants for citric acid in NaCl and KCl solutions and their mixtures at 25 °C. J. Solution Chem. 33, 1349–1366 (2004)

    Article  CAS  Google Scholar 

  24. Sharma, V.K., Moulin, A., Millero, F.J., De Stefano, C.: Dissociation constants of protonated cysteine species in seawater media. Mar. Chem. 99, 52–61 (2006)

    Article  CAS  Google Scholar 

  25. Foti, C., Gianguzza, A., Sammartano, S.: A comparison of equations for fitting protonation constants of carboxylic acids in aqueous tetramethylammonium chloride at various ionic strengths. J. Solution Chem. 26, 631–648 (1997)

    Article  CAS  Google Scholar 

  26. Foti, C., Sammartano, S., Signorino, G.: The dependence on ionic strength of protonation constants of carboxylic acids in aqueous tetraethylammonium iodide solution, at different temperatures. Fluid Ph. Equilib. 149, 91–101 (1998)

    Article  CAS  Google Scholar 

  27. Grenthe, I., Wanner, H.: Guidelines for the extrapolation to zero ionic strength. AEN-NEA, Issy-les-Moulineaux, France (2000)

  28. Östhols, E., Wanner, H.: The NEA thermochemical data base project. AEN-NEA, Issy-les-Moulineaux, France (2000)

  29. Grenthe, I., Puigdomenech, I.: Modelling in aquatic chemistry. OECD-NEA, Paris, France (1997)

  30. Bretti, C., Foti, C., Sammartano, S.: Calculation of SIT parameters. Part I. A new approach in the use of SIT in determining the dependence on ionic strength of activity coefficients. Application to some chloride salts of interest in the speciation of natural fluids. Chem. Speciat. Bioavailab. 16, 105–110 (2004)

    CAS  Google Scholar 

  31. Bretti, C., Foti, C., Porcino, N., Sammartano, S.: SIT parameters for 1:1 electrolytes and correlation with Pitzer coefficients. J. Solution Chem. 54, 1459–1466 (2006)

    Google Scholar 

  32. De Stefano, C., Milea, D., Pettinano, A., Sammartano, S.: Modeling ATP protonation and activity coefficients in NaClaq and KClaq by SIT and Pitzer equations. Biophys. Chem. 121, 121–130 (2006)

    Article  Google Scholar 

  33. Crea, F., Foti, C., De Stefano, C., Sammartano, S.: SIT parameters for 1:2 electrolytes and correlation with Pitzer coefficients. Ann. Chim. (Rome) 97, 85–95 (2007)

    Article  CAS  Google Scholar 

  34. Crea, F., Foti, C., De Stefano, C., Sammartano, S.: SIT parameters for the dependence of (poly)carboxylate activity coefficients on ionic strength in (C2H4)4NIaq (0<I<1.2 mol⋅kg−1) and (CH3)4NClaq (0<I<3.9 mol⋅kg−1) in the temperature range 278<T<328 K, and correlation with Pitzer parameters. J. Chem. Eng. Data 52, 2195–2203 (2007)

    Article  CAS  Google Scholar 

  35. Long, F.A., McDevit, W.F.: Activity coefficients of nonelectrolyte solutes in aqueous salt solution. Chem. Rev. 51, 119–169 (1952)

    Article  CAS  Google Scholar 

  36. Rivett, A.C.D., Rosemblum, E.I.: The influence of a second solute on the solubility of ortho-phthalic acid. Trans. Faraday Soc. 9, 297–309 (1914)

    Article  CAS  Google Scholar 

  37. Bergen, R.L., Long, F.A.: The salting in of substituted benzenes by large ion salts. J. Phys. Chem. A 60, 1131–1135 (1956)

    Article  CAS  Google Scholar 

  38. Bretti, C., Crea, F., Foti, C., Sammartano, S.: Solubility and activity coefficients of o-phthalic acid and cystine in NaClaq, (CH3)4NClaq and (C2H5)4NIaq at different ionic strengths, at t=25 °C. J. Chem. Eng. Data 50, 1761–1767 (2005)

    Article  CAS  Google Scholar 

  39. Bretti, C., Crea, F., Foti, C., Sammartano, S.: Solubility and activity coefficients of acidic and basic nonelectrolytes in aqueous salt solutions. 2. Solubility and activity coefficients of suberic, azelaic and sebacic acids in NaCl(aq), (CH3)4NCl(aq) and (C2H5)4NI(aq) at different ionic strengths and at t=25 °C. J. Chem. Eng. Data 51, 1660–1667 (2006)

    Article  CAS  Google Scholar 

  40. Adell, B.: Über die elektrolytische Dissociation von Dicarbonsâuren in Wasser und in wässerigen Alkalicloridlösungen. Z. Phys. Chem. 185, 161–205 (1939)

    Google Scholar 

  41. De Stefano, C., Princi, P., Rigano, C., Sammartano, S.: Computer analysis of equilibrium data in solution. ESAB2M: an improved version of the ESAB program. Ann. Chim. (Rome) 77, 643–675 (1987)

    Google Scholar 

  42. De Stefano, C., Mineo, P., Rigano, C., Sammartano, S.: Computer tools for the speciation of natural fluids. In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (eds.) Marine Chemistry—An Environmental Analytical Chemistry Approach, pp. 71–83. Kluwer Academic, Amsterdam (1997)

    Google Scholar 

  43. Biedermann, G.: Ionic media. In: Dahlem Workshop on the Nature of Seawater, pp. 339–362. Dahlem Konferenzen, Berlin (1975)

  44. Ciavatta, L.: The specific interaction theory in equilibrium analysis. Some empirical rules for estimating interaction coefficients of metal ion complexes. Ann. Chim. (Rome) 80, 255–263 (1990)

    CAS  Google Scholar 

  45. Grenthe, I.: Equilibrium analysis, the ionic medium method and activity factors. In: Gianguzza, A., Pellizzetti, E., Sammartano, S. (eds.) Chemistry of Marine Waters and Sediments, pp. 263–282. Springer, Berlin (2002)

    Google Scholar 

  46. Pitzer, K.S.: Theory: ion interaction approach: theory and data collection. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., vol. I, pp. 75–153. CRC Press, Boca Raton (1991)

    Google Scholar 

  47. Møller, N.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–834 (1988)

    Article  Google Scholar 

  48. Crea, F., De Stefano, C., Gianguzza, A., Piazzese, D., Sammartano, S.: Protonation of carbonate in aqueous tetraalkylammonium salts at t=25 °C. Talanta 68, 1102–1112 (2006)

    Article  CAS  Google Scholar 

  49. Rey-Castro, C., Castro-Varela, R., Herrero, R., Sastre de Vicente, M.E.: Acid-base equilibria of phthalic acid in saline media: ion association from Pitzer equations. Talanta 60, 93–101 (2003)

    Article  CAS  Google Scholar 

  50. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. Wiley, New York (1958)

    Google Scholar 

  51. Forina, M., Lanteri, S., Armanino, C.: Q-Parvus, release 3.0: an extendable package of programs for data explorative analysis, classification and regression analysis. Department of Chimica and Tecnologie Farmaceutiche ed Alimentari, University of Genova (2001). http://parvus.unige.it

  52. Filella, M., Bugarin, M.G., May, P.M.: Obtaining the ‘best values’ of stability constants: the protonation constants of five thioether carboxylates as a case study. Analyst 126, 2093–2100 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Sammartano.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bretti, C., De Stefano, C., Millero, F.J. et al. Modeling of Protonation Constants of Linear Aliphatic Dicarboxylates Containing -S-Groups in Aqueous Chloride Salt Solutions, at Different Ionic Strengths, Using the SIT and Pitzer Equations and Empirical Relationships. J Solution Chem 37, 763–784 (2008). https://doi.org/10.1007/s10953-008-9273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9273-3

Keywords

Navigation