Skip to main content
Log in

Viscosities for Ionic Liquid Binary Mixtures with a Common Ion

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

At present, there is a considerable amount of work devoted to the study of the thermophysical properties of pure ionic liquids, which contrasts with the few data available for their mixtures. One of the most appealing characteristics of ionic liquids is the capability of subtly changing the chemical structure of the cation and anion in order to design appropriate solvents for specific applications. Mixtures of ionic liquids increase enormously this specificity, due to the unlimited combinations that arise from mixing two or more ionic liquids. In this context, the study of the thermophysical properties of these mixtures is revealed as a fundamental task. In this work the viscosities of the ionic liquid binary mixtures with a common ion ([C6mim] + [C2mim])[BF4], ([C6mim] + [C4mim])[BF4], [C4mim]([BF4] + [MeSO4]) and [C4mim]([PF6] + [BF4]) were determined within the temperature range (298.15–308.15) K. The temperature dependence of the viscosity for pure liquids is analyzed by means of the Vogel-Tammann-Fulcher equation and several mixing rules are applied for the mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seddon, K.R.: Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68, 351–356 (1997)

    Article  CAS  Google Scholar 

  2. Rebelo, L.P.N., Canongia Lopes, J.N., Esperança, J.M.S.S., Filipe, E.: On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J. Phys. Chem. B 109, 6040–6043 (2005)

    Article  CAS  Google Scholar 

  3. Paulechka, Y.U., Zaitsau, Dz.H., Kabo, G.J., Strechan, A.A.: Vapour pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide. Thermochim. Acta 439, 158–160 (2005)

    Article  CAS  Google Scholar 

  4. Earle, M.J., Esperança, J.M.S.S., Gilea, M.A., Canongia Lopes, J.N., Rebelo, L.P.N., Magee, J.W., Seddon, K.R., Widegren, J.A.: The distillation and volatility of ionic liquids. Nature 439, 831–834 (2006)

    Article  CAS  Google Scholar 

  5. Brennecke, J.F., Maginn, E.J.: Ionic liquids: Innovative fluids for chemical processing. AIChe J. 47, 2384–2389 (2001)

    Article  CAS  Google Scholar 

  6. Holbrey, J.D., Seddon, K.R.: Ionic liquids. Clean Prod. Process. 1, 223–236 (1999)

    Google Scholar 

  7. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)

    Article  CAS  Google Scholar 

  8. Fadeev, A.G., Meagher, M.M.: Opportunities for ionic liquids in recovery of biofuels. Chem Commun. 295 (2001)

  9. Wilkes, J.S.: Properties of ionic liquids solvents for catalysis. Mol. Catal. A Chem. 214, 11–17 (2004)

    Article  CAS  Google Scholar 

  10. Seddon, K.R., Stark, A., Torres, M.J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)

    Article  CAS  Google Scholar 

  11. Hayamizu, K., Aihara, Y., Nakagawa, H., Nukuda, T., Price, W.S.: Ionic conduction and ion diffusion in binary room-temperature ionic liquids composed of [emim][BF4] and LiBF4. J. Phys. Chem. B 108, 19527–19532 (2004)

    Article  CAS  Google Scholar 

  12. Tokuda, H., Hayamizu, K., Ishii, K., Susan, Md.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)

    Article  CAS  Google Scholar 

  13. Liu, W., Zhao, T., Zhang, Y., Wang, H., Yu, K.: The physical properties of aqueous solutions of the ionic liquid [BMIM] [BF4]. J. Solution Chem. 35, 1337–1346 (2006)

    Article  CAS  Google Scholar 

  14. Okoturo, O.O., VanderNoot, T.J.: Temperature dependence of viscosity for room temperature ionic liquids. J. Electroanal. Chem. 568, 167–181 (2004)

    Article  CAS  Google Scholar 

  15. Van Valkenburg, M.E., Vaughn, R.L., Williams, M., Wilkes, J.S.: Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 425, 181–188 (2005)

    Article  CAS  Google Scholar 

  16. Schröder, C., Wakai, C., Weingärtner, H., Steinhauser, O.: Collective rotational dynamics in ionic liquids: A computational and experimental study of 1-butyl-3-methyl-imidazolium tetrafluoroborate. J. Chem. Phys. 126, 084511 (2007)

    Article  CAS  Google Scholar 

  17. Frez, C., Diebold, G.J., Tran, C.D., Yu, S.: Determination of thermal diffusivities, thermal conductivities, and sound speeds of room-temperature ionic liquids by the transient grating technique. J. Chem. Eng. Data 51, 1250–1255 (2006)

    Article  CAS  Google Scholar 

  18. Jiqin, Z., Jian, C., Chengyue, L., Weiyang, F.: Viscosities and interfacial properties of 1-methyl-3-butylimidazolium hexafluorophosphate and 1-isobutenyl-3-methylimidazolium tetrafluoroborate ionic liquids. J. Chem. Eng. Data 52, 812–816 (2007)

    Article  CAS  Google Scholar 

  19. Harris, K.R., Wolf, L.A., Kanakubo, M.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 50, 1777–1782 (2005)

    Article  CAS  Google Scholar 

  20. Harris, K.R., Kanakubo, M., Wolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data 52, 1080–1085 (2007)

    Article  CAS  Google Scholar 

  21. Seddon, K.R., Stark, A., Torres, M.-J.: Viscosity and density of 1-alkyl-3-methylimidazolium ionic liquids. In: M. Abrahan and Moens (eds.) Clean Solvent: Alternative Media Chemical Reactions and Processing. ACS Symp. Ser., vol. 1, p. 819 (2002)

  22. Pereiro, A.B., Verdía, P., Tojo, E., Rodríguez, A.: Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. J. Chem. Eng. Data 52, 377–380 (2007)

    Article  CAS  Google Scholar 

  23. Navia, P., Troncoso, J., Romaní, L.: Excess magnitudes for ionic liquid binary mixtures with a common ion. J. Chem. Eng. Data 52, 1369–1374 (2007)

    Article  CAS  Google Scholar 

  24. Sanmamed, Y.A., González-Salgado, D., Troncoso, J., Cerdeiriña, C.A., Romaní, L.: Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilibr. 252, 96–102 (2007)

    Article  CAS  Google Scholar 

  25. Troncoso, J., Cerdeiriña, C.A., Sanmamed, Y.A., Romani, L., Rebelo, L.P.N.: Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. J. Chem. Eng. Data 51, 1856–1859 (2004)

    Article  CAS  Google Scholar 

  26. Canongia Lopes, J.N., Cordeiro, T.C., Esperança, J.M.S.S., Guedes, H.J.R., Huq, S., Rebelo, L.P.N., Seddon, K.R.: Deviations from ideality in mixtures of two ionic liquids containing a common ion. J. Phys. Chem. B 109, 3519–3525 (2005)

    Article  CAS  Google Scholar 

  27. Torres, M.-J.: Ph.D. Thesis, The Queen’s University of Belfast, Belfast (2001)

  28. Vila, J., Ginés, P., Pico, J.M., Franjo, C., Jiménez, E., Varela, L.M., Cabeza, O.: Temperature dependence of the electrical conductivity in EMIM-based ionic liquids Evidence of Vogel–Tamman–Fulcher behaviour. Fluid Phase Equilibr. 242, 141–146 (2006)

    Article  CAS  Google Scholar 

  29. Angell, C.A., Sare, E.J.: Glass-forming composition regions and glass transition temperatures for aqueous electrolyte solutions. J. Chem. Phys. 52, 1058–1068 (1970)

    Article  CAS  Google Scholar 

  30. Zhang, Z.H., Tan, Z.C., Li, Y.S., Sun, L.X.: Thermodynamic investigation of room temperature ionic liquid. Heat capacity and thermodynamic functions of BMIBF4. J. Therm. Anal. Calorim. 85, 551–557 (2006)

    Article  CAS  Google Scholar 

  31. Crosthwaite, J.M., Muldoon, M.J., Dixon, J.K., Anderson, J.L., Brennecke, J.F.: Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn. 37, 559–568 (2005)

    Article  CAS  Google Scholar 

  32. Kabo, G.J., Blokhin, A.V., Paulechka, Y.U., Kabo, A.G.M., Shymanovich, M.P., Magee, J.W.: Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the condensed state. J. Chem. Eng. Data 49, 453–461 (2004)

    Article  CAS  Google Scholar 

  33. Domanska, U., Pobudkowska, A., Eckert, F.: Liquid–liquid equilibria in the binary systems (1,3-dimethylimidazolium, or 1-butyl-3-methylimidazolium methylsulfate + hydrocarbons). Green Chem. 8, 268–276 (2006)

    Article  CAS  Google Scholar 

  34. Gómez, E., González, B., Domínguez, A., Tojo, E., Tojo, J.: Dynamic viscosities of a series of 1-alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures with water at several temperatures. J. Chem. Eng. Data 51, 696–701 (2006)

    Article  CAS  Google Scholar 

  35. Benson, G.C., Kiyohara, O.: Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem Thermodyn. 11, 1061–1064 (1979)

    Article  CAS  Google Scholar 

  36. Prausnitz, J.M., Lichtentaler, R.N., Azevedo, E.G.: Molecular Thermodynamics of Fluid Phase Equilibria, 2a edn. Prentice–Hall, Englewood Cliffs (1986)

    Google Scholar 

  37. Glasstone, S., Laidler, K.J., Eyring, H.: The Theory of Rate Processes, vol. 9, p. 477. MacGraw–Hill, New York (1941)

    Google Scholar 

  38. Katti, P.K., Chandhri, M.M.: Viscosities of binary mixtures of benzyl acetate with dioxane, aniline, and m-cresol. J. Chem. Eng. Data 9, 442–443 (1964)

    Article  CAS  Google Scholar 

  39. Grunberg, L., Nissan, A.H.: Mixture law for viscosity. Nature 164, 799–800 (1949)

    Article  CAS  Google Scholar 

  40. Allal, A., Moha-Ouchane, M., Boned, C.: A new free volume model for dynamic viscosity and density of dense fluids versus pressure and temperature. Phys. Chem. Liq. 39, 1–30 (2001)

    Article  CAS  Google Scholar 

  41. Allal, A., Boned, C., Baylaucq, A.: Free-volume viscosity model for fluids in the dense and gaseous states. Phys. Rev. E 64, 011203/1–011203/10 (2001)

    Article  CAS  Google Scholar 

  42. Boned, C., Allal, A., Baylaucq, A., Zeberg-Mikkelsen, C.K., Bessieres, D., Quinones-Cisneros, S.E.: Simultaneous free-volume modeling of the self-diffusion coefficient and dynamic viscosity at high pressure. Phys. Rev. E 69, 031203/1–031203/6 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Romaní.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navia, P., Troncoso, J. & Romaní, L. Viscosities for Ionic Liquid Binary Mixtures with a Common Ion. J Solution Chem 37, 677–688 (2008). https://doi.org/10.1007/s10953-008-9260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9260-8

Keywords

Navigation