Skip to main content
Log in

Activity Coefficient Derivatives of Ternary Systems Based on Scatchard’s Neutral Electrolyte Description

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Activity coefficient derivatives with respect to molality are presented for the Scatchard Neutral Electrolyte description of a ternary common-ion electrolyte system. These quantities are needed for the calculation of “diffusion Onsager coefficients” and in turn for tests of the Onsager Reciprocal Relations in diffusion. The usually-omitted b 23 term is included. The direct SNE binary approximations and a further approximation are discussed. Binary evaluation strategies other than constant ionic strength are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pitzer, K.S.: Ion interaction approach: Theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton (1991), Chap. 3

    Google Scholar 

  2. Scatchard, G.: Osmotic coefficients and activity coefficients in mixed electrolyte solutions. J. Am. Chem. Soc. 83, 2636–2842 (1961). Corrections: J. Phys. Chem. 72, 769 (1968)

    Article  CAS  Google Scholar 

  3. Rush, R.M., Johnson, J.S.: Isopiestic measurements of the osmotic and activity coefficients for the systems HClO4–LiClO4–H2O, HClO4–NaClO4–H2O, and LiClO4–NaClO4–H2O. J. Phys. Chem. 72, 767–774 (1968)

    Article  CAS  Google Scholar 

  4. Wu, Y.C., Rush, R.M., Scatchard, G.: Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25°. I. Isopiestic measurements on the four systems with common ions. J. Phys. Chem. 72, 4048–4053 (1968)

    Article  CAS  Google Scholar 

  5. Wu, Y.C., Rush, R.M., Scatchard, G.: Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25°. II. Isopiestic and electromotive force measurements on the two systems without common ions. J. Phys. Chem. 73, 2047–2053 (1969)

    Article  CAS  Google Scholar 

  6. Rush, R.M.: Parameters for the calculation of osmotic and activity coefficients and tables of these coefficients for twenty-two aqueous mixtures of two electrolytes at 25°. ORNL-4402, Oak Ridge National Laboratory, April 1969, p. 71

  7. Whitfield, M.: Sea water as an electrolyte solution. In: Riley, J.P., Skirrow, G. (eds.) Chemical Oceanography, pp. 43–171. Academic Press, New York (1975), Chap. 2

    Google Scholar 

  8. Scatchard, G.: The excess free energy and related properties of solutions containing electrolytes. J. Am. Chem. Soc. 90, 3124–3128 (1968). Errata: J. Am. Chem. Soc. 91, 2410 (1968)

    Article  CAS  Google Scholar 

  9. Scatchard, G., Rush, R.M., Johnson, J.S.: Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25°. III. Treatment with the ions as components. J. Phys. Chem. 74, 3786–3796 (1970)

    Article  CAS  Google Scholar 

  10. Reilly, P.J., Wood, R.H.: The prediction of the properties of mixed electrolytes from measurements on common ion mixtures. J. Phys. Chem. 73, 4292–4297 (1969)

    Article  CAS  Google Scholar 

  11. Reilly, P.J., Wood, R.H., Robinson, R.A.: The prediction of osmotic and activity coefficients in mixed-electrolyte solutions. J. Phys. Chem. 75, 1305–1315 (1971)

    Article  CAS  Google Scholar 

  12. Friedman, H.L.: Ionic Solution Theory. Interscience, New York (1975)

    Google Scholar 

  13. Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous CsCl, SrCl2, and mixtures of NaCl and CsCl at 25 °C. J. Chem. Eng. Data 27, 169–173 (1982)

    Article  CAS  Google Scholar 

  14. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of aqueous MnCl2, MnSO4, and RbCl at 25 °C. J. Chem. Eng. Data 29, 443–450 (1984)

    Article  CAS  Google Scholar 

  15. Rard, J.A., Clegg, S.L.: Critical evaluation of the thermodynamic properties of aqueous calcium chloride. 1. Osmotic and activity coefficients of 0–10.77 mol⋅kg−1 aqueous calcium chloride at 298.15 K and correlation with extended Pitzer ion-interaction models. J. Chem. Eng. Data 42, 819–849 (1997)

    Article  CAS  Google Scholar 

  16. Miller, D.G.: Ternary isothermal diffusion and the validity of the Onsager reciprocity relations. J. Phys. Chem. 63, 570–578 (1959)

    Article  CAS  Google Scholar 

  17. Dunlop, P.J., Gosting, L.J.: Use of diffusion and thermodynamic data to test the Onsager reciprocal relation for isothermal diffusion in the system NaCl–KCl–H2O at 25°. J. Phys. Chem. 63, 86–93 (1959)

    Article  CAS  Google Scholar 

  18. Woolf, L.A., Miller, D.G., Gosting, L.J.: Isothermal diffusion measurements on the system H2O–glycine–KCl at 25°; Tests of the Onsager reciprocal relation. J. Am. Chem. Soc. 84, 317–331 (1962)

    Article  CAS  Google Scholar 

  19. Miller, D.G., Vitagliano, V., Sartorio, R.: Some comments on multicomponent diffusion: negative main term diffusion coefficients, second law constraints, and reference frame transformations. J. Phys. Chem. 90, 1509–1519 (1986)

    Article  CAS  Google Scholar 

  20. Miller, D.G.: Application of irreversible thermodynamics to electrolyte solutions. I. Determination of ionic transport coefficients l ij for isothermal vector transport processes in binary electrolyte systems. J. Phys. Chem. 70, 2639–2659 (1966)

    Article  CAS  Google Scholar 

  21. Miller, D.G.: Application of irreversible thermodynamics to electrolyte solutions. II. Ionic coefficients l ij for isothermal vector transport processes in ternary systems. J. Phys. Chem. 71, 616–632 (1967)

    Article  CAS  Google Scholar 

  22. Miller, D.G.: Application of irreversible thermodynamics to electrolyte solutions. III. Equations for isothermal vector transport processes in n-component systems. J. Phys. Chem. 71, 3588–3592 (1967)

    Article  CAS  Google Scholar 

  23. Miller, D.G.: Ionic interactions in transport processes as described by irreversible thermodynamics. Faraday Discuss. 64, 295–303 (1978). (Also see discussions pp. 137–138, 346–347, 350)

    CAS  Google Scholar 

  24. Felmy, A.R., Weare, J.H.: Calculation of multicomponent ionic diffusion from zero to high concentration. I. The system Na–K–Ca–Mg–Cl–SO4–H2O at 25 °C. Geochim. Cosmochim. Acta 55, 113–131 (1991)

    Article  CAS  Google Scholar 

  25. Felmy, A.R., Weare, J.H.: Calculation of multicomponent ionic diffusion from zero to high concentration. II. Inclusion of associated ion species. Geochim. Cosmochim. Acta 55, 113–131 (1991)

    Article  CAS  Google Scholar 

  26. Sundheim, B.R.: Transport processes in multicomponent liquids. J. Chem. Phys. 27, 791–795 (1957)

    Article  CAS  Google Scholar 

  27. Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of NaCl and SrCl2 at 25 °C. J. Chem. Eng. Data 27, 342–346 (1982)

    Article  CAS  Google Scholar 

  28. Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of NaCl and MgCl2 at 25 °C. J. Chem. Eng. Data 32, 85–92 (1987)

    Article  CAS  Google Scholar 

  29. Leifer, L., Wigent, R.J.: Determination of the contribution of pair, triplet, and higher-order multiplet interactions to the excess free energy of mixing in mixed electrolyte solutions. J. Phys. Chem. 89, 244–245 (1985)

    Article  CAS  Google Scholar 

  30. Albright, J.G., Mathew, R., Miller, D.G., Rard, J.A.: Isothermal diffusion coefficients for NaCl–MgCl2–H2O at 25 °C. 1. Solute concentration ratio of 3:1. J. Phys. Chem. 93, 2176–2180 (1989)

    Article  CAS  Google Scholar 

  31. Paduano, L., Mathew, R., Albright, J.G., Miller, D.G., Rard, J.A.: Isothermal diffusion coefficients for NaCl–MgCl2–H2O at 25 °C. 2. Low concentrations of NaCl with a wide range of MgCl2 concentrations. J. Phys. Chem. 93, 4366–4370 (1989)

    Article  CAS  Google Scholar 

  32. Mathew, R., Paduano, L., Albright, J.G., Miller, D.G., Rard, J.A.: Isothermal diffusion coefficients for NaCl–MgCl2–H2O at 25 °C. 3. Low MgCl2 concentrations with a wide range of NaCl concentrations. J. Phys. Chem. 93, 4370–4374 (1989)

    Article  CAS  Google Scholar 

  33. Mathew, R., Albright, J.G., Miller, D.G., Rard, J.A.: Isothermal diffusion coefficients for NaCl–MgCl2–H2O at 25 °C. 4. Solute concentration ratio of 1:3. J. Phys. Chem. 94, 6875–6878 (1990)

    Article  CAS  Google Scholar 

  34. Miller, D.G., Albright, J.G., Mathew, R., Lee, C.M., Rard, J.A., Eppstein, L.B.: Isothermal diffusion coefficients of NaCl–MgCl2–H2O at 25 °C. 5. Solute concentration ratio of 1:1 and some Rayleigh results. J. Phys. Chem. 97, 3885–3899 (1993)

    Article  CAS  Google Scholar 

  35. Mitchell, J.P.: Optical measurement of binary and multicomponent diffusion coefficients in aqueous solutions. Dissertation, Texas Christian University, Fort Worth, Texas, pp. 148–150 (1992). 152 pp. (Available from University Microfilms, Order No. DA9310482, P.O. Box 1346, Ann Arbor, MI 48106-1346, USA)

  36. Lietzke, M.H., Stoughton, R.W.: A simple method for predicting the osmotic coefficient of aqueous solutions containing more than one electrolyte. J. Inorg. Nucl. Chem. 36, 1315–1317 (1974)

    Article  CAS  Google Scholar 

  37. Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)

    Article  Google Scholar 

  38. Harned, H.S., Robinson, R.A.: Multicomponent Electrolyte Solutions. Pergamon, Elmsford (1968)

    Google Scholar 

  39. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworths, London (1959)

    Google Scholar 

  40. Lietzke, M.H., Stoughton, R.W.: A simple empirical equation for the prediction of the activity-coefficient value of each component in an aqueous electrolyte mixture containing a common ion. J. Solution Chem. 1, 299–308 (1972)

    Article  CAS  Google Scholar 

  41. Robinson, R.A., Bower, V.E.: Properties of aqueous mixtures of pure salts: thermodynamics of the ternary system water-potassium chloride-barium chloride at 25 °C. J. Res. Natl. Bur. Stand. 69A, 439–448 (1965)

    Google Scholar 

  42. Miller, D.G.: The connection between Young’s rule for apparent molar volumes and a Young’s rule for density. J. Solution Chem. 24, 967–987 (1995)

    Article  CAS  Google Scholar 

  43. Miller, D.G.: Binary mixing approximations and relations between specific conductance, molar conductance, equivalent conductance, and ionic conductance for mixtures. J. Phys. Chem. 100, 1220–1226 (1996)

    Article  CAS  Google Scholar 

  44. Wirth, H.E., Bangert, F.K.: Volume changes on mixing solutions of magnesium chloride and sodium chloride. J. Phys. Chem. 76, 3491–3494 (1972)

    Article  CAS  Google Scholar 

  45. Reilly, P.J., Wood, R.H.: Heats of mixing aqueous electrolytes. IX. The reciprocal salt pair Mg2+, Na+, Cl, Br. J. Phys. Chem. 76, 3474–3479 (1972)

    Article  CAS  Google Scholar 

  46. Wood, R.H., Ghamkhar, M.: Heats of mixing aqueous electrolytes. VII. Calcium chloride and barium chloride with some alkali metal chlorides. J. Phys. Chem. 73, 3959–3965 (1969)

    Article  CAS  Google Scholar 

  47. Rard, J.A., Clegg, S.L., Platford, R.F.: Thermodynamics of {zNaCl + (1−z)Na2SO4}(aq) from T=278.15 K to T=318.15 K, and representation with an extended ion-interaction (Pitzer) model. J. Chem. Thermodyn. 35, 967–1008 (2003)

    Article  CAS  Google Scholar 

  48. Robinson, R.A., Platford, R.F., Childs, C.W.: Thermodynamics of aqueous mixtures of sodium chloride, potassium chloride, sodium sulfate, and potassium sulfate at 25 °C. J. Solution Chem. 1, 167–172 (1972)

    Article  CAS  Google Scholar 

  49. Todorović, M., Ninković, R.: Osmotic and activity coefficients of {xKNO3+(1−x)K2SO4}(aq) at the temperature 298.15 K. J. Chem. Thermodyn. 25, 1071–1076 (1993)

    Article  Google Scholar 

  50. Miller, D.G., Rard, J.A., Eppstein, L.B., Robinson, R.A.: Mutual diffusion coefficients, electrical conductances, osmotic coefficients, and ionic transport coefficients l ij for aqueous CuSO4 at 25 °C. J. Solution Chem. 9, 467–496 (1980)

    CAS  Google Scholar 

  51. Padova, J., Saad, D.: Thermodynamics of mixed electrolyte solutions. VIII. An isopiestic study of the ternary system KCl–MgCl2–H2O at 25 °C. J. Solution Chem. 6, 57–71 (1977)

    Article  CAS  Google Scholar 

  52. Lim, T.K., Chan, C.Y., Khoo, K.H.: Activity coefficients of electrolytes in binary mixtures calculated using total molal quantities. J. Solution Chem. 9, 507–515 (1980)

    Article  CAS  Google Scholar 

  53. Lim, T.K., Zhong, E.C., Friedman, H.L.: Contribution to the theory of electrolyte mixtures at equilibrium. J. Phys. Chem. 90, 144–152 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald G. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D.G. Activity Coefficient Derivatives of Ternary Systems Based on Scatchard’s Neutral Electrolyte Description. J Solution Chem 37, 365–375 (2008). https://doi.org/10.1007/s10953-007-9236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9236-0

Keywords

Navigation