Skip to main content
Log in

Investigation of the Electrochemical Reduction of Benzophenone in Aprotic Solvents Using the Method of Cyclic Voltammetry

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The reduction of benzophenone (Bzph) in 3-pentanone (PEN), acetone (ACE), N,N-dimethylacetamide (DMA), N,N-dimethylformamide (DMF), tetrahydrofuran (THF), acetonitrile (ACN) and dimethyl sulfoxide (DMSO) with n-tetrabutylammonium hexafluorophosphate (TBAPF6) as background electrolyte was studied using the technique of cyclic voltammetry at the temperature of 263.15 K. The half-wave potentials (E 1/2) were extracted. The reduction of Bzph occurs in two successive one-electron steps to produce first the free radical anion Bzph and then the dianion Bzph2−. The results indicated that the radical anion Bzph is reoxidized to Bzph in all investigated solvent media whereas the dianion Bzph2− is reoxidized to Bzph only in THF. The heterogeneous electron-transfer rate constants (k s ) were evaluated by employing the electrochemical rate equation proposed by Nicholson. The rate of electron transfer for the Bzph/Bzph couple was found to be relatively slow in all investigated solvent media. Consequently, the electron-transfer processes can be recognized as quasi-reversible. The diffusion coefficients (D) of Bzph in the investigated solvent media have been calculated using the modified Randles-Sevcik equation. The effect of the physical and chemical properties of the solvent medium on the electrochemical behavior of Bzph has been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlenk, W., Weickel, T.: Metallic compounds of diaryl ketones. Chem. Berichte 44, 1182–1189 (1911)

    CAS  Google Scholar 

  2. Kleiner, G., Tarnopolsky, A., Hoz, S.: Reduction of benzophenone by SmI2: The role of proton donors in determining product distribution. Org. Lett. 7, 4197–4200 (2005)

    Article  CAS  Google Scholar 

  3. Simon, J.D., Peters, K.S.: Solvent effects on the picosecond dynamics of the photoreduction of benzophenone by aromatic amines. J. Am. Chem. Soc. 103, 6403–6406 (1981)

    Article  CAS  Google Scholar 

  4. Given, P.H., Peover, M.E.: Polarographic reduction of aromatic hydrocarbons and carbonyl compounds in dimethylformamide in the presence of proton donors. J. Chem. Soc., 385–393 (1960)

  5. Wawzonek, S., Gundersen, A.: Polarographic studies in acetonitrile and dimethylformamide. Behavior of aromatic ketones and aldehydes. J. Electrochem. Soc. 107, 537–540 (1960)

    Article  CAS  Google Scholar 

  6. Michielli, R.F., Elving, P.J.: Electrochemical reduction of benzophenone in aprotic medium. Effect of proton availability. J. Am. Chem. Soc. 90, 1989–1995 (1968)

    Article  CAS  Google Scholar 

  7. Curphey, T.J., Trivedi, L.D., Layloff, T.: Electrochemical reductive acylation of benzophenone. J. Org. Chem. 39, 3831–3834 (1974)

    Article  CAS  Google Scholar 

  8. Demortier, A., Bard, A.J.: Electrochemical reactions of organic compounds in liquid ammonia. Reduction of benzophenone. J. Am. Chem. Soc. 95, 3495–3500 (1973)

    Article  CAS  Google Scholar 

  9. Nadjo, L., Savéant, J.M.: Electrochemical reduction of substituted benzophenones and fluorenones in media of low proton availability mechanism of the reductive cleavage of bromo and chlorobenzophenones. Electroanal. Chem. Interface Electrochem. 30, 41–57 (1971)

    Google Scholar 

  10. Grimshaw, J., Hamilton, R.: Steric and electronic effects on the redox potentials of benzophenone radical anions. J. Electroanal. Chem. 106, 339–346 (1980)

    CAS  Google Scholar 

  11. Zuman, P., Exner, O., Rekker, R.F., Nauta, W.T.: Polarographic reduction of aldehydes and ketones. Linear free energy treatment of substituted benzophenones. Collect. Czech. Chem. Commun. 33, 3213–3226 (1968)

    CAS  Google Scholar 

  12. Molander, G.A., Harris, C.R.: Sequencing reactions with samarium(II) iodide. Chem. Rev. 96, 307–338 (1996)

    Article  CAS  Google Scholar 

  13. Kagan, H.B.: Twenty-five years of organic chemistry with diiodosamarium: an overview. Tetrahedron 59, 1–10372 (1035) (2003)

    Google Scholar 

  14. Elving, P.J., Leone, J.T.: Mechanism of the electrochemical reduction of phenyl ketones. J. Am. Chem. Soc. 80, 1021–1029 (1958)

    Article  CAS  Google Scholar 

  15. Suzuki, M., Elving, P.J.: Kinetics and mechanism for the electrochemical reduction of benzophenone in acidic media. J. Phys. Chem. 65, 391–398 (1961)

    Article  CAS  Google Scholar 

  16. Geske, D.H., Maki, A.H.: Electrochemical generation of free radicals and their study by electron spin resonance spectroscopy: The nitrobenzene anion radical. J. Am. Chem. Soc. 82, 2671–2676 (1960)

    Article  CAS  Google Scholar 

  17. Kemula, W., Grabowski, Z.R., Kalinowski, M.K.: Electrochemical method of studying the reactions of free radicals. Naturwissenschaften 47, 514–514 (1960)

    Article  CAS  Google Scholar 

  18. Kadish, K.M., Cornillon, J.L., Yao, C.L., Malinski, T., Gritzner, G.: Solvent effects on electrode potentials of metalloporphyrins. Reduction of 5,10,15,20-tetraphenylporphinato complexes in non-aqueous media. J. Electroanal. Chem. 235, 189–207 (1987)

    Article  CAS  Google Scholar 

  19. Hecht, M., Fawcett, W.R.: Solvent effects in the electroreduction of [diamine-N,N′-polycarboxylato]chromate(III) complexes at a mercury electrode. J. Electroanal. Chem. 396, 473–483 (1995)

    Article  Google Scholar 

  20. Lorenzana, T., Franjo, C., Jiménez, E., Fernández, J., Paz-Andrade, M.I.: Volume excess of binary mixtures containing 3-pentanone or 3-heptanone with 1-chloroalkanes at 298.15 K. J. Chem. Eng. Data 39, 172–174 (1994)

    Article  CAS  Google Scholar 

  21. Wang, J., Zhu, A., Zhao, Y., Zhuo, K.: Excess molar volumes and excess logarithm viscosities for binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium hexaflurophosphate with some organic compounds. J. Solution Chem. 34, 585–596 (2005)

    Article  CAS  Google Scholar 

  22. Johari, G.P.: Dielectric constants, densities, and viscosities of acetone-1-propanol and acetone-n-hexane mixtures at 25 °C. J. Chem. Eng. Data 13, 541–543 (1968)

    Article  CAS  Google Scholar 

  23. Iloukhani, H., Khanlarzadeh, K.: Densities, viscosities, and refractive indices for binary and ternary mixtures of N,N-dimethylacetamide/2-methylbutan-2-ol/ethyl acetate at 298.15 K for the liquid region and at ambient pressure. J. Chem. Eng. Data 51, 1226–1231 (2006)

    Article  CAS  Google Scholar 

  24. Nikam, P.S., Kharat, S.J.: Densities and viscosities of binary mixtures of N,N-dimethylformamide with benzyl alcohol and acetophenone at 298.15, 303.15, 308.15 and 313.15 K. J. Chem. Eng. Data 48, 1291–1295 (2003)

    Article  CAS  Google Scholar 

  25. Paez, S., Confreras, M.: Densities and viscosities of binary mixtures of 1-propanol and 2-propanol with acetonitrile. J. Chem. Eng. Data 34, 455–459 (1989)

    Article  CAS  Google Scholar 

  26. Giner, B., Gascon, I., Villares, A., Cea, P., Lafuente, C.: Densities and viscosities of the binary mixtures of tetrahydrofuran with isomeric chlorobutanes at 298.15 K and 313.15 K. J. Chem. Eng. Data 51, 1321–1325 (2006)

    Article  CAS  Google Scholar 

  27. Baragi, J.G., Aralaguppi, M.I., Aminabhavi, T.M., Kariduraganavar, M.Y., Kittur, A.S.: Density, viscosity, refractive index, and speed of sound for binary mixtures of anisole with 2-chloroethanol, 1,4-dioxane, tetrachloroethylene, tetrachloroethane, DMF, DMSO, and diethyl oxalate at 298.15, 303.15 and 308.15 K. J. Chem. Eng. Data 50, 910–916 (2005)

    Article  CAS  Google Scholar 

  28. Tsierkezos, N.G., Molinou, I.E.: Thermodynamic properties of water/ethylene glycol at 283.15, 293.15, 303.15, and 313.15 K. J. Chem. Eng. Data 43, 989–993 (1998)

    Article  CAS  Google Scholar 

  29. Tsierkezos, N.G., Molinou, I.E.: Surface tension of the 4-methyl-2-pentanone/ethyl benzoate binary system in the temperature range from 278.15 to 308.15 K. J. Solution Chem. 35, 279–296 (2006)

    Article  CAS  Google Scholar 

  30. Dombrowski, G.W., Dinnocenzo, J.P., Farid, S., Goodman, J.L., Gould, I.R.: a-C-H bond dissociation energies of some tertiary amines. J. Org. Chem. 64, 427–431 (1999)

    Article  CAS  Google Scholar 

  31. Hartl, F., Mahabiersing, T., Le Floch, P., Mathey, F., Ricard, L., Rosa, P., Záliš, S.: Electronic properties of 4,4′,5,5′-tetramethyl-2,2′-biphosphinine (tmbp) in the redox series fac-[Mn(Br)(CO)3(tmbp)], [Mn(CO)3(tmbp)]2, and [Mn(CO)3(tmbp)]: Crystallographic, spectroelectrochemical, and DFT computational study. Inorg. Chem. 42, 4442–4455 (2003)

    Article  CAS  Google Scholar 

  32. Hultgren, V.M., Mariotti, A.W.A., Bond, A.M., Wedd, A.G.: Reference potential calibration and voltammetry at macrodisk electrodes of metallocene derivatives in the ionic liquid [bmim][PF6]. Anal. Chem. 74, 3151–3156 (2002)

    Article  CAS  Google Scholar 

  33. Gosser, D.K.: Cyclic Voltammetry, p. 30. VCH, New York (1993)

  34. Degrand, C.D., Prest, R., Compagnon, P.L.: Electrochemical synthesis of (phenylseleno)benzophenones and (phenyltelluro)benzophenones by the SRN1 mechanism using a redox catalyst. J. Org. Chem. 52, 5229–5233 (1987)

    Article  CAS  Google Scholar 

  35. Bond, A.M., Oldham, K.B., Snook, G.A.: Use of the eerrocene oxidation process to provide both reference electrode potential calibration and a simple measurement (via Semiintegration) of the uncompensated resistance in cyclic voltammetric studies in high-resistance organic solvents. Anal. Chem. 72, 3492–3496 (2000)

    Article  CAS  Google Scholar 

  36. Gutmann, V.: The Donor-Acceptor Approach to Molecular Interactions. Plenum, New York (1978)

    Google Scholar 

  37. Gritzner, G., Danksagmüller, K., Gutmann, V.: Solvent effects on the redox potentials of tetraethylammonium hexacyanomanganate(III) and hexacyanoferrate(III). J. Electroanal. Chem. 90, 203–210 (1978)

    Article  CAS  Google Scholar 

  38. Jaworski, J.S., Lesniewska, W., Kalinowski, M.K.: Solvent effect on the redox potential of quinone-semiquinone systems. J. Electroanal. Chem. 105, 329–334 (1979)

    Article  CAS  Google Scholar 

  39. Randles, J.E.B.: Cathode-ray polarograph, Current-voltage curves. Trans. Faraday Soc. 44, 327–338 (1948)

    Article  CAS  Google Scholar 

  40. Comminges, C., Barhdadi, R., Laurent, M., Troupel, M.: Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: ionic liquids and molecular solvents. J. Chem. Eng. Data 51, 680–685 (2006)

    Article  CAS  Google Scholar 

  41. Bard, A.J., Faulkner, L.R.: Electrochemical Methods. Wiley, New York (1980)

    Google Scholar 

  42. Maeda, Y., Sato, K., Ramaraj, R., Rao, T.N., Tryk, D.A., Fujishima, A.: The electrochemical response of highly boron-doped conductive diamond electrodes to Ce3+ ions in aqueous solution. Electrochim, Acta 44, 3441–3449 (1999)

    Article  CAS  Google Scholar 

  43. Fawcett, W.R., Fedurco, M.: Medium effects in the electroreduction of benzophenone in aprotic solvents. J. Phys. Chem. 97, 7075–7080 (1993)

    Article  CAS  Google Scholar 

  44. Robinson, R.A.: Stokes, R.H. Electrolyte Solutions, 2nd edn. Butterworths, London (1959)

  45. Nicholson, R.S.: Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos G. Tsierkezos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsierkezos, N.G. Investigation of the Electrochemical Reduction of Benzophenone in Aprotic Solvents Using the Method of Cyclic Voltammetry. J Solution Chem 36, 1301–1310 (2007). https://doi.org/10.1007/s10953-007-9188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9188-4

Keywords

Navigation