Skip to main content
Log in

Diffusion Coefficients of Tris(β-diketonato)ruthenium Complexes of Different Charge Numbers in Acetonitrile Solutions, Measured by Chronoamperometry

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The diffusion coefficients of several tris(β-diketonato) ruthenium complexes in acetonitrile solutions containing a supporting electrolyte were determined by chronoamperometry. The diffusion coefficients of the charged complexes, which were produced by electrochemical oxidation or reduction, were also determined by double potential step chronoamperometry. Two kinds of radii of the complexes were evaluated. One was the Van der Waals radius and the other was the geometric distance from the center of the complex to the outer surface of the farthest atom. The latter quantity was determined from X-ray diffractometric data. The diffusion coefficients of the neutral complexes were discussed on the basis of the Stokes-Einstein equation. Those of charged complexes could not be explained by the theoretical equation presented by Hubbard and Onsager.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans, D.F., Chan, C., Lamartine, B.C.: The effect of charge upon mobility. A critical examination of the Zwanzig equation. J. Am. Chem. Soc. 99, 6492–6496 (1977)

    Article  CAS  Google Scholar 

  2. Evans, D.F., Tominaga, T., Chan, C.: Diffusion of symmetrical and spherical solutes in protic, aprotic, and hydrocarbon solvents. J. Solution Chem. 8, 461–478 (1979)

    Article  CAS  Google Scholar 

  3. Evans, D.F., Tominaga, T., Davis, H.T.: Tracer diffusion in polyatomic liquids. J. Chem. Phys. 74, 1298–1305 (1981)

    Article  CAS  Google Scholar 

  4. Edward, J.T.: Molecular volumes and the Stokes-Einstein equation. J. Chem. Educ. 47, 261–270 (1970)

    Article  CAS  Google Scholar 

  5. Hubbard, J., Onsager, L.: Dielectric dispersion and dielectric friction in electrolyte solutions. I. J. Chem. Phys. 67, 4850–4857 (1977)

    Article  CAS  Google Scholar 

  6. Hubbard, J.B.: Dielectric dispersion and dielectric friction in electrolyte solutions. II. J. Chem. Phys. 68, 1649–1664 (1978)

    Article  CAS  Google Scholar 

  7. Ikeuchi, H.: Determination of diffusion coefficients of complexes in organic solvents. Denki Kagaku 60, 693–697 (1992) (presently titled Electrochemistry)

    CAS  Google Scholar 

  8. Ikeuchi, H., Kanakubo, M., Watanabe, Y., Naito, T., Satô, G.P.: Chronoamperometric determination of diffusion coefficients under microgravity conditions. J. Electroanal. Chem. 562, 105–110 (2004)

    Article  CAS  Google Scholar 

  9. Ikeuchi, H., Kanakubo, M.: Determination of diffusion coefficients of the electrode reaction products by the double potential step chronoamperometry at small disk electrodes. J. Electroanal. Chem. 493, 93–99 (2000)

    Article  CAS  Google Scholar 

  10. Ikeuchi, H., Kanakubo, M.: Diffusion coefficients of ferrocene and ferricinium ion in tetraethylammonium perchlorate acetonitrile solutions, as determined by chronoamperometry. Electrochemistry 69, 34–36 (2001)

    CAS  Google Scholar 

  11. Hishida, Y., Nishi, M., Baba, Y., Ikeuchi, H.: Diffusion coefficients of C60 and C 60 in benzonitrile and dichloromethane solutions containing tetrabutylammonium perchlorate, measured by potential-step chronoamperometry. Anal. Sci. 22, 931–935 (2006)

    Article  CAS  Google Scholar 

  12. Tyrrell, H.J.V., Harris, K.R.: Diffusion in Liquids. Butterworths, London (1984), Section 5.9

    Google Scholar 

  13. Endo, A., Shimizu, K., Satô, G.P., Mukaida, M.: A new method for synthesis of ruthenium(III) and ruthenium(II) complexes of β-diketones from “ruthenium blue” solution. Chem. Lett. 1984, 437–440 (1984)

    Article  Google Scholar 

  14. Endo, A., Kajitani, M., Mukaida, M., Shimizu, K., Satô, G.P.: A New synthetic method for ruthenium complexes of β-diketones from ‘ruthenium blue solution’ and their properties. Inorg. Chim. Acta 150, 25–34 (1988)

    Article  CAS  Google Scholar 

  15. Gordon, II, J.G., O’Connor, M.J., Holm, R.H.: Stereochemistry and rearrangement rates of some tris(β-diketonato)- and tris-(β-thioketonato)metal(III) complexes. Inorg. Chim. Acta 5, 381–391 (1971)

    Article  CAS  Google Scholar 

  16. Kissinger, P.T., Heineman, W.R.: Laboratory Techniques in Electroanalytical Chemistry, 2nd edn. Dekker, New York (1996), Chap. 15

    Google Scholar 

  17. Izutsu, K.: Electrochemistry in Nonaqueous Solutions, p. 309. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  18. Shoup, D., Szabo, A.: Chronoamperometric current at finite disk electrodes. J. Electroanal. Chem. 140, 237–245 (1982)

    Article  CAS  Google Scholar 

  19. Ikeuchi, H.: Accuracy of theoretical equations for diffusion currents at a disk electrode. J. Electroanal. Chem. 577, 55–58 (2005)

    Article  CAS  Google Scholar 

  20. Tominaga, T., Tanabe, K., Takanaka, J.: Limiting interdiffusion coefficients of tris(acetylacetonato)cobalt(III) in water and in organic solvents. J. Solution Chem. 13, 563–570 (1984)

    Article  CAS  Google Scholar 

  21. Bondi, A.: van der Waals volume and radii. J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  22. Shannon, R.D., Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Cryst. B 25, 925–946 (1969)

    Article  CAS  Google Scholar 

  23. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  24. Johansson, G., Yokoyama, H.: Inner- and outer-sphere complex formation in aqueous erbium halide and perchlorate solutions. An X-ray diffraction study using isostructural substitution. Inorg. Chem. 29, 2460–2466 (1990)

    Article  CAS  Google Scholar 

  25. Kanakubo, M., Ikeuchi, H., Satô, G.P., Yokoyama, H.: Structure of solvation sphere of tris(acetylacetonato)chromium(III) in acetonitrile. J. Phys. Chem. B 101, 3827–3833 (1997)

    Article  CAS  Google Scholar 

  26. Chao, G.K.-J., Sime, R.L., Sime, R.J.: The crystal and molecular structure of tris-acetylacetonatoruthenium(III). Acta Cryst. B 29, 2845–2849 (1973)

    Article  CAS  Google Scholar 

  27. Matsuzawa, H., Ohashi, Y., Kaizu, Y., Kobayashi, H.: Crystal structure and absolute configuration of (+) CD275 -tris(2,4-pentanedionato)ruthenium(III). Inorg. Chem. 27, 2981–2985 (1988)

    Article  CAS  Google Scholar 

  28. Reynolds, P.A., Cable, J.W., Sobolev, A.N., Figgis, B.N.: Structure, covalence and spin polarization in tris(acetylacetonato)ruthenium(III) studied by X-ray and polarized neutron diffraction. J. Chem. Soc. Dalton Trans., 559–569 (1998)

  29. Iball, J., Morgan, C.H.: A refinement of the crystal structure of ferric acetylacetonate. Acta Cryst. 23, 239–244 (1967)

    Article  CAS  Google Scholar 

  30. Hon, P.K., Pfluger, C.E.: The crystal and molecular structure of tris(acetylacetonato)-aluminum(III) and -cobalt(III). J. Coord. Chem. 3, 67–76 (1973)

    Article  CAS  Google Scholar 

  31. Kruger, G.J., Reynhardt, E.C.: New investigation of the structure of triacecylacetonatocobalt(III). Acta Cryst. B 30, 822–824 (1974)

    Article  CAS  Google Scholar 

  32. Hoshino, Y., Higuchi, S., Fiedler, J., Su, C.-Y., Knödler, A., Schwederski, B., Sarkar, B., Hartmann, H., Kaim, W.: Long-range electronic coupling in various oxidation states of a C4-linked tris(β-diketonato)ruthenium dimer. Angew. Chem. Int. Ed. 42, 674–677 (2003)

    Article  CAS  Google Scholar 

  33. Hoshino, Y.: Doctoral Thesis, Sophia University, Tokyo, Japan (1988)

  34. Hoshino, Y., Yukawa, Y., Maruyama, T., Endo, A., Shimizu, K., Satô, G.P.: Preparation, characterization and electrochemical properties of mixed-ligand ruthenium(III) and ruthenium(II) complexes with two kinds of β-diketones. Inorg. Chim. Acta 174, 41–51 (1990)

    Article  CAS  Google Scholar 

  35. Dunitz, J.D., Orgel, L.E., Rich, A.: The crystal structure of ferrocene. Acta Cryst. 9, 373–375 (1956)

    Article  CAS  Google Scholar 

  36. Fischer, D.W.: Crystallographic data for some ferrocene derivatives. Acta Cryst. 17, 619 (1964)

    Article  Google Scholar 

  37. Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R.: Solid C60: A new form of carbon. Nature 347, 354–358 (1990)

    Article  Google Scholar 

  38. Liu, S., Lu, Y.-J., Kappes, M.M., Ibers, J.A.: The structure of the C60 molecule: X-ray crystal structure determination of a twin at 110 K. Science 254, 408–409 (1991)

    Article  CAS  Google Scholar 

  39. Hawkins, J.M., Lewis, T.A., Loren, S.D., Meyer, A., Heath, J.R., Saykally, R.J., Hollander, F.J.: A crystallographic analysis of C60 (Buckminsterfullerene). J. Chem. Soc. Chem. Commun. 775–776 (1991)

  40. André, D., Dworkin, A., Szwarc, H., Céolin, R., Agafonov, V., Fabre, C., Rassat, A., Straver, L., Bernier, P., Zahab, A.: Molecular packing of fullerene C60 at room temperature. Mol. Phys. 76, 1311–1317 (1992)

    Article  Google Scholar 

  41. Meléndez, E., Ilarraza, R., Yap, G.P.A., Rheingold, A.L.: Synthesis and structure of ruthenium(II)-diene complexes. J. Organomet. Chem. 522, 1–7 (1996)

    Article  Google Scholar 

  42. Meléndez, E., López, V., Concolino, T., Rheingold, A.L.: Structure and redox behavior of Ru(II)-diene complexes. J. Organomet. Chem. 689, 3082–3087 (2004)

    Article  CAS  Google Scholar 

  43. Mammano, N.J., Zalkin, A., Landers, A., Rheingold, A.L.: Crystal and molecular structure of ferricinium tetrachlorobismuthate. Inorg. Chem. 16, 297–300 (1977)

    Article  CAS  Google Scholar 

  44. Bodenseh, H.K., Ramsey, J.B.: Variation in the K A-value of a salt with composition of a binary solvent. J. Phys. Chem. 67, 140–143 (1963)

    Article  CAS  Google Scholar 

  45. Barthel, J., Iberl, L., Rossmaier, J., Gores, H.J., Kaukal, B.: Conductance of 1,1-electrolytes in acetonitrile solutions from −40° to 3 °C. J. Solution Chem. 19, 321–337 (1990)

    Article  CAS  Google Scholar 

  46. LeSuer, R.J., Buttolph, C., Geiger, W.E.: Comparison of the conductivity properties of the tetrabutylammonium salt of tetrakis(pentafluorophenyl)borate anion with those of traditional supporting electrolyte anions in nonaqueous solvents. Anal. Chem. 76, 6395–6401 (2004)

    Article  CAS  Google Scholar 

  47. Svorstøl, I., Sigvartsen, T., Songstad, J.: Solvent properties of dichloromethane. VII. Viscosity studies of electrolytes in dichloromethane. Acta Chem. Scand. B 42, 133–144 (1988)

    Article  Google Scholar 

  48. Zwanzig, R.: Dielectric friction on a moving ion. J. Chem. Phys. 38, 1603–1605 (1963)

    Article  CAS  Google Scholar 

  49. Zwanzig, R.: Dielectric friction on a moving ion. II. Revised theory. J. Chem. Phys. 52, 3625–3628 (1970)

    Article  CAS  Google Scholar 

  50. Gosting, L.J., Harned, H.S.: The application of the Onsager theory of ionic mobilities to self-diffusion. J. Am. Chem. Soc. 73, 159–161 (1951)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruko Ikeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeuchi, H., Naganuma, K., Ichikawa, M. et al. Diffusion Coefficients of Tris(β-diketonato)ruthenium Complexes of Different Charge Numbers in Acetonitrile Solutions, Measured by Chronoamperometry. J Solution Chem 36, 1243–1259 (2007). https://doi.org/10.1007/s10953-007-9185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9185-7

Keywords

Navigation