Skip to main content
Log in

Lactonization and Protonation of Gluconic Acid: A Thermodynamic and Kinetic Study by Potentiometry, NMR and ESI-MS

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In acidic aqueous solutions, the protonation of gluconate is coupled with the lactonization of gluconic acid. With a decrease of pC H, two lactones (δ- and γ-) are sequentially formed. The δ-lactone forms more readily than the γ-lactone. In 0.1 mol⋅L−1 gluconate solutions, if pC H>2.5 then only the δ-lactone is generated. When the pC H is decreased below 2.0, formation of the γ-lactone is observed although the δ-lactone still predominates. In solutions with I=0.1 mol⋅L−1 NaClO4 and room temperature, the deprotonation constant of the carboxylic group was determined to be log 10 K a=3.30±0.02 using the NMR technique, and the δ-lactonization constant obtained by batch potentiometric titrations was log 10 K L=−(0.54±0.04). Using ESI-MS, the rate constants for the δ-lactonization and the reverse hydrolysis reaction at pC H≈5.0 were estimated to be k 1=3.2×10−5 s−1 and k −1=1.1×10−4 s−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yano, S.: Coordination compounds containing sugars and their derivatives. Coord. Chem. Rev. 92, 113–156 (1988)

    Article  CAS  Google Scholar 

  2. Whitfield, D.M., Stojkovky, S., Sarka, B.: Metal coordination to carbohydrates. Structures and function. Coord. Chem. Rev. 122, 171–225 (1993)

    CAS  Google Scholar 

  3. Sawyer, D.T.: Metal-gluconate complexes. Chem. Rev. 64, 633–643 (1964)

    Article  CAS  Google Scholar 

  4. Carper, W.R., Coffin, D.B.: NMR studies of paramagnetic metal ion interactions with gluconate and 1,5-gluconolactone. Inorg. Chimica Acta 167, 261–264 (1990)

    Article  CAS  Google Scholar 

  5. Goroux, S., Rubini, P., Henry, B., Aury, S.: Complexes of praseodymium(III) with D-gluconic acid. Polyhedron 19, 1567–1574 (2000)

    Article  Google Scholar 

  6. Zhernosekov, K.P., Mauerhofer, E., Getahun, G., Warwick, P., Rosch, F.: Complex formation of Tb3+ with glycolate, D-gluconate and α-isosaccharinate in neutral aqueous perchlorate solutions. Radiochim. Acta 91, 599–602 (2003)

    Article  CAS  Google Scholar 

  7. Warwick, P., Evan, N., Hall, T., Vines, S.: Stability constants of uranium(IV)-α-isosaccharinic acid and gluconic acid complexes. Radiochim. Acta 92, 897–902 (2004)

    Article  CAS  Google Scholar 

  8. Coccioli, F., Vicedomini, M.: On the protonation of gluconate ions and complex formation with lead(II) in acid solutions. Inorg. Nucl. Chem. 40, 2103–2105 (1978)

    Article  CAS  Google Scholar 

  9. Motekaitis, R.J., Martell, A.E.: Complexes of aluminum(III) with hydroxy carboxylic acids. Inorg. Chem. 23, 18–23 (1984)

    Article  CAS  Google Scholar 

  10. Sawyer, D.T., Bagger, J.B.: The lactone-acid-salt equilibria for D-glucono-δ-lactone and the hydrolysis kinetics for this lactone. J. Am. Chem. Soc. 81, 5302–5306 (1959)

    Article  CAS  Google Scholar 

  11. Combes, C.L., Birch, G.G.: Interaction of D-glucono-1,5-lactone with water. Food Chem. 27, 283–298 (1988)

    Article  CAS  Google Scholar 

  12. Ekberg, S., Ekberg, C., Albinsson, Y.: Characterization of α-isosaccharinic acid: Lactone and carboxylic conformations. J. Solution Chem. 33, 465–477 (2004)

    Article  CAS  Google Scholar 

  13. Pecsok, R.L., Sandera, J.: The gluconate complexes. II. The ferric-gluconate system. J. Am. Chem. Soc. 77, 1489–1494 (1955)

    Article  CAS  Google Scholar 

  14. Wishart, D.S., Bogam, C.G., Yao, J., Abildgard, F., Dyson, H.J., Oldfield, E., Markley, J.L., Sykes, B.D.: 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135–140 (1995)

    Article  CAS  Google Scholar 

  15. Wishart, D.S., Nip, A.M.: Protein chemical shift analysis: a practical guide. Biochem. Cell Biol. 76, 153–163 (1998)

    Article  CAS  Google Scholar 

  16. Bates, R.G.: Determination of pH Theory and Practice. Wiley, New York (1964)

    Google Scholar 

  17. Zanonato, P., Di Bernardo, P., Bismondo, A., Liu, G., Chen, X., Rao, L.: Hydrolysis of uranium(VI) at variable temperatures (10–85 °C). J. Am. Chem. Soc. 126, 5515–5522 (2004)

    Article  CAS  Google Scholar 

  18. Rao, L., Srinivasan, T.G., Garnov, A.Y., Zanonato, P., Di Bernardo, P., Bismondo, A.: Hydrolysis of neptunium(V) at variable temperatures (10–85 °C). Geochim. Cosmochim. Acta 68, 4821–4836 (2004)

    Article  CAS  Google Scholar 

  19. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

  20. Hoffmann, E.D., Stroobant, V.: Mass Spectrometry, Principles and Applications, 2nd. edn. Willey, New York (2002)

    Google Scholar 

  21. Drago, R.S.: Nuclear magnetic resonance spectroscopy-additional principles and applications. In: Physical Methods in Chemistry, pp. 252–309. Saunders, Philadelphia (1977)

    Google Scholar 

  22. Frassineti, C., Ghelli, S., Gans, P., Sabatini, A., Moruzzi, M.S., Vacca, A.: Nuclear magnetic resonance as a tool for determining protonation constants of natural polyprotic bases in solution. Anal. Biochem. 231, 374–382 (1995)

    Article  CAS  Google Scholar 

  23. Anderson, D.E., Lu, J., McIntosh, L. Dahlquist, F.W.: In: Clore, G.M., Gronenborr, A.M. (eds.) NMR of Proteins, 258. CRC, Boca Raton (1993)

    Google Scholar 

  24. Cho, H.M., Rai, D., Hess, N.J., Xia, Y., Rao, L.: Acidity and structure of isosaccharinate in aqueous solution: a nuclear magnetic resonance study. J. Solution Chem. 32, 691–702 (2003)

    Article  CAS  Google Scholar 

  25. Martell, A.E., Smith, R.M.: NIST critically selected stability constants of metal complexes. NIST Standard Reference Database 46 Version 6.0, developed by R.J. Motekaitis and distributed by NIST Standard Reference Data (2001)

  26. Silva, C.O., Da Silva, E.C., Nascimento, M.A.C.: Ab initio calculations of absolute pK a values in aqueous solution II. Aliphatic alcohols, thiols, and halogenated carboxylic acids. J. Phys. Chem. A 104, 2402–2409 (2000)

    Article  CAS  Google Scholar 

  27. Kim, H.I., Johnson, P.V., Beegle, L.W., Beauchamp, J.L., Kanik, I.: Electrospray ionization ion mobility spectrometry of carboxylate anions: ion mobilities and a mass-mobility correlation. J. Phys. Chem. A 109, 7888–7895 (2005)

    Article  CAS  Google Scholar 

  28. Espenson, J.H.: Reversible and concurrent reactions. In: Speer, J.B., Morriss, J.M. (eds.) Chemical Kinetics and Reaction Mechanism, 2nd edn., pp. 46–69. McGraw-Hill, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue B. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Gibson, P., Clark, S.B. et al. Lactonization and Protonation of Gluconic Acid: A Thermodynamic and Kinetic Study by Potentiometry, NMR and ESI-MS. J Solution Chem 36, 1187–1200 (2007). https://doi.org/10.1007/s10953-007-9182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9182-x

Keywords

Navigation