Skip to main content
Log in

Li+ Transport Mechanism in Oligo(Ethylene Oxide)s Compared to Carbonates

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been performed on oligo(ethylene oxide)s of various molecular weights doped with the lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI) in order to explore the mechanism of Li+ transport in materials covering the range from liquid electrolytes to prototypes for high molecular weight poly(ethylene oxide)-based polymer electrolytes. Good agreement between MD simulations and experiments is observed for the conductivity of electrolytes as a function of molecular weight. Unlike Li+ transport in liquid ethylene carbonate (EC) that comes from approximately equal contributions of vehicular Li+ motion (motion together with solvent) and Li+ diffusion by solvent exchange, Li+ transport in oligoethers was found to occur predominantly by vehicular motion. The slow solvent exchange of Li+ in oligo(ethylene oxide)s highlights why high molecular weight amorphous polymer electrolytes with oligo(ethylene oxide)s solvating groups suffer from poor Li+ transport. Ion complexation and correlation of cation and anion motion is examined for oligoethers and compared with that in EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  2. Borodin, O., Smith, G.D.: Development of quantum chemistry-based force fields for poly(ethylene oxide) with many-body polarization interactions. J. Phys. Chem. B 107, 6801–6812 (2003)

    Article  CAS  Google Scholar 

  3. Borodin, O., Smith, G.D.: Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39, 1620–1629 (2006)

    Article  CAS  Google Scholar 

  4. Borodin, O., Smith, G.D.: Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents. J. Phys. Chem. B 110, 6279–6292 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. Borodin, O., Smith, G.D., Douglas, R.: Force field development and MD simulations of poly(ethylene oxide)/LiBF4 polymer electrolytes. J. Phys. Chem. B 107, 6824–6837 (2003)

    Article  CAS  Google Scholar 

  6. Hayamizu, K., Akiba, E., Bando, T., Aihara, Y.: H-1, Li-7, and F-19 nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O)(n)CH3 (n = 3–50) doped with LiN(SO2CF3)(2). J. Chem. Phys. 117, 5929–5939 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Borodin, O., Smith, G.D.: Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped oligoether, polyether, and carbonate-based electrolytes. J. Phys. Chem. B 110, 6293–6299 (2006)

    Article  PubMed  CAS  Google Scholar 

  8. Borodin, O., Smith, G.D., Henderson, W.: Li+ cation environment, transport and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium +TFSI ionic liquids. J. Phys. Chem. B 110, 16879–16886 (2006)

    Article  PubMed  CAS  Google Scholar 

  9. Borodin, O., Smith, G.D.: Structure and dynamics of (N-methyl-N-propylpyrrolidinium) +(TFSI) ionic liquid from molecular dynamics simulations. J. Phys. Chem. B 110, 11481–11490 (2006)

    Article  PubMed  CAS  Google Scholar 

  10. Muller-Plathe, F., van Gunsteren, W.F.: Computer simulation of a polymer electrolyte: Lithium iodide in amorphous poly(ethylene oxide). J. Chem. Phys. 103, 4745–4756 (1995)

    Article  ADS  Google Scholar 

  11. Smith, G.D., Borodin, O., Pekny, M., Annis, B., Londono, D., Jaffe, R.L.: Polymer force fields from ab initio studies of small model molecules: Can we achieve chemical accuracy? Spectrochim. Acta A Mol. Biomol. Spectrosc. 53, 1273–1283 (1997)

    Article  Google Scholar 

  12. Borodin, O., Smith, G.D.: Molecular dynamics simulations of poly(ethylene oxide)/LiI melts 1. Structural and conformational properties. Macromolecules 31, 8396–8406 (1998)

    Article  CAS  Google Scholar 

  13. Borodin, O., Smith, G.D.: Molecular dynamics simulations of poly(ethylene oxide)/LiI melts 2. Dynamic properties. Macromolecules 33, 2273–2283 (2000)

    Article  CAS  Google Scholar 

  14. Sawa, F., Takimoto, J., Aoyagi, T., Fukunaga, H., Shoji, T., Doi, M.: Molecular dynamics study of poly(ethylene oxide) containing LiI salt. Progr. Theor. Phys. Suppl. 408–409 (2000)

  15. Hyun, J.K., Dong, H.T., Rhodes, C.P., Frech, R., Wheeler, R.A.: Molecular dynamics simulations and spectroscopic studies of amorphous tetraglyme (CH3O(CH2CH2O)(4)CH3) and tetraglyme:LiCF3SO3 structures. J. Phys. Chem. B 105, 3329–3337 (2001)

    Article  CAS  Google Scholar 

  16. Triolo, A., Arrighi, V., Triolo, R., Passerini, S., Mastragostino, M., Lechner, R.E., Ferguson, R., Borodin, O., Smith, G.D.: Dynamic heterogeneity in polymer electrolytes. Comparison between QENS data and MD simulations. Phys. B 301, 163–167 (2001)

    CAS  Google Scholar 

  17. van Zon, A., de Leeuw, S.W.: A Rouse model for polymer electrolytes. Electrochim. Acta 46, 1539–1544 (2001)

    Article  Google Scholar 

  18. Ferreira, B.A., Muller-Plathe, F., Bernardes, A.T., De Almeida, W.B.: A comparison of Li+ transport in dimethoxyethane, poly(ethylene oxide) and poly(tetramethylene oxide) by molecular dynamics simulations. Solid State Ionics 147, 361–366 (2002)

    Article  CAS  Google Scholar 

  19. Kuppa, V., Manias, E.: Computer simulation of PEO/layered-silicate nanocomposites: 2. Lithium dynamics in PEO/Li+ montmorillonite intercalates. Chem. Mater. 14, 2171–2175 (2002)

    Article  CAS  Google Scholar 

  20. Borodin, O., Smith, G.D., Bandyopadhyaya, R., Redfern, P., Curtiss, L.A.: Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4. Model Simul. Mater. Sci. Eng. 12, S73–S89 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Siqueira, L.J.A., Ribeiro, M.C.C.: Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO4. I. Structural properties. J. Chem. Phys. 122, 194911/1-8 (2005)

    Article  ADS  Google Scholar 

  22. Duan, Y.H., Halley, J.W., Curtiss, L., Redfern, P.: Mechanisms of lithium transport in amorphous polyethylene oxide. J. Chem. Phys. 122, 054702/1-8 (2005)

    Google Scholar 

  23. Borodin, O., Smith, G.D., Geiculescu, O., Creager, S.E., Hallac, B., DesMarteau, D.: Li+ transport in lithium sulfonylimide-oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI. J. Phys. Chem. B 110, 24266–24274 (2006)

    Article  PubMed  CAS  Google Scholar 

  24. Siqueira, L.J.A., Ribeiro, M.C.C.: Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO4. II. Dynamical properties. J. Chem. Phys. 125, 214903–214908 (2006)

    Article  PubMed  ADS  Google Scholar 

  25. Annis, B.K., Borodin, O., Smith, G.D., Grant, D., Benmore, C.J., Soper, A.K., Londono, J.D.: The structure of a poly(ethylene oxide) melt from neutron scattering and molecular dynamics simulations. J. Chem. Phys. 115, 10998–11003 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Borodin, O., Smith, G.D.: LiTFSI Structure and transport in ethylene carbonate from molecular dynamics simulations. J. Phys. Chem. B 110, 4971–4977 (2006)

    Article  PubMed  CAS  Google Scholar 

  27. Borodin, O., Smith, G.D.: Molecular dynamics simulations of comb-branched poly(epoxide ether)-based polymer electrolytes. Macromolecules 40, 1252–1258 (2007)

    Article  Google Scholar 

  28. Li, T., Balbuena, P.B.: Theoretical studies of lithium perchlorate in ethylene carbonate, propylene carbonate, and their mixtures. J. Electrochem. Soc. 146, 3613–3622 (1999)

    Article  CAS  Google Scholar 

  29. Balbuena, P.B., Lamas, E.J., Wang, Y.X.: Molecular modeling studies of polymer electrolytes for power sources. Electrochim. Acta 50, 3788–3795 (2005)

    Article  CAS  Google Scholar 

  30. Masia, M., Probst, M., Rey, R.: Ethylene carbonate-Li+: A theoretical study of structural and vibrational properties in gas and liquid phases. J. Phys. Chem. B 108, 2016–2027 (2004)

    Article  CAS  Google Scholar 

  31. Tasaki, K.: Computational study of salt association in Li-ion battery electrolyte. J. Electrochem. Soc. 149, A418–A425 (2002)

    Article  CAS  Google Scholar 

  32. Newman, J., Thomas, K.E., Hafezi, H., Wheeler, D.R.: Modeling of lithium-ion batteries. J. Power Sources 119, 838–843 (2003)

    Article  Google Scholar 

  33. Soetens, J.C., Millot, C., Maigret, B.: Molecular dynamics simulation of Li(+)BF4(−) in ethylene carbonate, propylene carbonate, and dimethyl carbonate solvents. J. Phys. Chem. A 102, 1055–1061 (1998)

    Article  CAS  Google Scholar 

  34. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Academic Press (2002)

  35. Martyna, G.J., Tuckerman, M., Tobias, D.J., Klein, M.L.: Explicit reversible integration algorithms for extended systems. Mol. Phys. 87, 1117–1157 (1996)

    Article  CAS  Google Scholar 

  36. Gering, K.L.: Prediction of electrolyte viscosity for aqueous and non-aqueous systems: Results from a molecular model based on ion solvation and a chemical physics framework. Electrochim. Acta 51, 3125–3138 (2006)

    Article  CAS  Google Scholar 

  37. Smith, G.D., Borodin, O., Bedrov, D., Paul, W., Qiu, X., Ediger, M.D.: C-13 NMR spin-lattice relaxation and conformational dynamics in a 1,4-polybutadiene melt. Macromolecules 34, 5192–5199 (2001)

    Article  CAS  Google Scholar 

  38. Aihara, Y., Sugimoto, K., Price, W.S., Hayamizu, K.: Ionic conduction and self-diffusion near infinitesimal concentration in lithium salt-organic solvent electrolytes. J. Chem. Phys. 113, 1981–1991 (2000)

    Article  ADS  CAS  Google Scholar 

  39. Cote, J.F., Brouillette, D., Desnoyers, J.E., Rouleau, J.F., St-Arnaud, J.M., Perron, G.: Dielectric constants of acetonitrile, gamma-butyrolactone, propylene carbonate, and 1,2-dimethoxyethane as a function of pressure and temperature. J. Solution Chem. 25, 1163–1173 (1996)

    Article  CAS  Google Scholar 

  40. Chernyak, Y.: Dielectric constant, dipole moment, and solubility parameters of some cyclic acid esters. J. Chem. Eng. Data 51, 416–418 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Borodin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodin, O., Smith, G.D. Li+ Transport Mechanism in Oligo(Ethylene Oxide)s Compared to Carbonates. J Solution Chem 36, 803–813 (2007). https://doi.org/10.1007/s10953-007-9146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9146-1

Keywords

Navigation