Abstract
A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na+, K+, Mg2+, Ca2+, Cl− and NO −3 ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 °C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 °C. The measurements have been performed using Oak Ridge National Laboratory’s (ORNL) previously designed gravimetric isopiestic apparatus, which can also detect solid phase precipitation. In addition to various Na–K–Mg–Ca–Cl–NO3 systems, results are reported for LiCl solutions. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid–liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor–liquid and solid–liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems.
Similar content being viewed by others
References
Holmes, H.F., Baes Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures I. KCl, CaCl2, and MgCl2. J. Chem. Thermodyn. 10, 983–996 (1978)
Holmes, H.F., Baes Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures II. NaCl + KCl Mixtures. J. Chem. Thermodyn. 11, 1035–1050 (1979)
Holmes, H.F., Mesmer, R.E.: Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250 °C. J. Phys. Chem. 87, 1242–1255 (1983)
Rard, J.A., Platford, R.F.: In: Pitzer, K.S. (Ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., pp. 209–277. CRC Press, Boca Raton (1991)
Gruszkiewicz, M.S., Simonson, J.M.: Vapor pressures and isopiestic molalities of concentrated CaCl2(aq), CaBr2(aq), and NaCl(aq) to T=523 K. J. Chem. Thermodyn. 37, 906–930 (2005)
Ge, Z., Wexler, A.S., Johnston, M.V.: Deliquescence behavior of multicomponent aerosols. J. Phys. Chem. A 102, 173–180 (1998)
Carroll, S., Craig, L., Wolery, T.J.: Deliquescence of NaCl–NaNO3, KNO3–NaNO3, and NaCl–KNO3 salt mixtures from 90 to 120 °C. Geochim. Trans. 6, 19–30 (2005)
Wang, P., Anderko, A., Young, R.D.: A speciation-based model for mixed-solvent electrolyte systems. Fluid Phase Equilib. 203, 141–176 (2002)
Wang, P., Springer, R.D., Anderko, A., Young, R.D.: Modeling phase equilibria and speciation in mixed-solvent electrolyte systems. Fluid Phase Equilib. 222–223, 11–17 (2004)
Wang, P., Anderko, A., Springer, R.D., Young, R.D.: Modeling phase equilibria and speciation in mixed-solvent electrolyte systems II. Liquid–liquid equilibria and properties of associating electrolyte solutions. J. Mol. Liq. 125, 37–44 (2006)
Pitzer, K.S.: Electrolytes. From dilute solutions to fused salts. J. Am. Chem. Soc. 102, 2902–2906 (1980)
Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures. New expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)
Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures I. Summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci. 274, 1089–1198 (1974). Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. II. Debye–Hückel parameters for activity coefficients and relative partial molal properties. Ibid. 274, 1199–1261 (1974). Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinite dilution. Ibid. 276, 97–240 (1976); Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600 °C. Ibid. 281, 1241–1516 (1981)
Tanger, J.C., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 19–98 (1988)
Shock, E.L., Helgeson, H.C., Sverjensky, D.A.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 53, 2157–2183 (1989)
Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52, 2009–2036 (1988). Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species. Ibid. 54, 915–943 (1990)
Shock, E.L., Sassani, D.C., Willis, M., Sverjensky, D.A.: Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide ions. Geochim. Cosmochim. Acta 61, 907–950 (1997)
Sverjensky, D.A., Shock, E.L., Helgeson, H.C.: Prediction of the thermodynamic properties of aqueous metal complexes to 1000 °C and 5 kb. Geochim. Cosmochim. Acta 61, 1359–1412 (1997)
Linke, W.F., Seidell, A.S.: Solubilities of Inorganic and Metal Organic Compounds K-Z, vol. 2, 4th edn. American Chemical Society, Washington (1965)
Vyazova, V.V., Pelsha, A.D.: Handbook of Experimental Solubility Data for Binary Aqueous and Non-aqueous Systems Containing Group I Elements, vol. 3. Khimia, Leningrad (1961)
Cohen-Adad, R., Lorimer, J.W.: Alkali Metal and Ammonium Chlorides in Water and Heavy Water (Binary Systems). Solubility Data Series, vol. 47. Pergamon, Oxford (1991)
Rard, J.A.: Results from boiling temperature measurements for saturated solutions in the systems NaCl + Ca(NO3)2 + H2O, NaNO3 + KNO3 + H2O, and NaCl + KNO3 + H2O, and dry out temperatures for NaCl + NaNO3 + KNO3 + Ca(NO3)2 + H2O, Report UCRL-TR-217415, Lawrence Livermore National Laboratory (2005)
Rard, J.A.: Results from boiling temperature measurements for saturated solutions in the systems NaCl + KNO3 + H2O, NaNO3 + KNO3 + H2O, and NaCl + NaNO3 + KNO3 + H2O, Report UCRL-TR-207054, Lawrence Livermore National Laboratory (2004)
Archer, D.G.: Thermodynamic properties of the NaCl + H2O System II. Thermodynamic properties of NaCl(aq), NaCl⋅2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)
Archer, D.G.: Thermodynamic properties of the NaCl + H2O System I. Thermodynamic properties of NaCl(cr). J. Phys. Chem. Ref. Data 21, 1–21 (1992)
Sohnel, O., Novotny, P.: Densities of Aqueous Solutions of Inorganic Substances. Elsevier, Amsterdam (1985)
Zaytsev, I.D., Aseyev, G.G.: Properties of Aqueous Solutions of Electrolytes. CRC Press, Boca Raton (1992)
Holmes, F.G., Baes Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures I. KCl, CaCl2, and MgCl2. J. Chem. Thermodyn. 10, 983–996 (1978)
Ellis, A.J.: Partial molal volumes of alkali chlorides in aqueous solution to 200 °C. J. Chem. Soc. A Inorg. Phys. Theor. 1579–1584 (1966)
Khaibullin, I.Kh., Borisov, N.M.: Experimental investigation of the thermal properties of aqueous and vapor solutions of sodium and potassium chlorides at phase equilibrium high temperature. High Temp. 4, 489–494 (1966)
Mayrath, J.E., Wood, R.H.: Enthalpy of dilution of aqueous solutions of LiCl, NaBr, NaI, KCl, KBr, and CsCl at about 373, 423, and 473 K. J. Chem. Thermodyn. 14, 563–576 (1982)
Holmes, H.F., Mesmer, R.E.: Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250 °C. J. Phys. Chem. 87, 1242–1255 (1983)
Pabalan, R.T., Pitzer, K.S.: Apparent molar heat capacity and other thermodynamic properties of aqueous KCl solutions to high temperatures and pressures. J. Chem. Eng. Data 33, 354–362 (1988)
Gillespie, S.E., Chen, X., Oscarson, J.L., Izatt, R.M.: Enthalpies of dilution of aqueous solutions of LiCl, KCl, and CsCl at 300, 325 and 350 °C. J. Solution Chem. 26, 47–61 (1997)
Archer, D.G.: Thermodynamic properties of the KCl + H2O systems. J. Phys. Chem. Ref. Data 28, 1–17 (1999)
Pelsha, A.D.: Handbook of Experimental Data of Salt Solubilities, Binary Systems, Elements IIA, vol. 4. Khimiya, Leningrad (1963)
Sako, T., Hakuta, T., Yoshitome, H.J.: Vapor pressures of binary (H2O–HCl, –MgCl2, and –CaCl2) and Ternary (H2O–MgCl2–CaCl2) aqueous solutions. J. Chem. Eng. Data 30, 224–228 (1985)
Urusova, M.A., Valyashko, V.M.: The vapour pressure and the activity of water in concentrated aqueous solutions containing the chlorides of alkali metals (Li, K, Cs) and alkaline earth metals (Mg, Ca) at increased temperature. Russ. J. Inorg. Chem. 32, 23–26 (1987)
Oscarson, J.L., Gillespie, S.E., Chen, X., Schuck, P.C., Izatt, R.M.: Enthalpies of dilution of aqueous solutions of HCl, MgCl2, CaCl2, and BaCl2 at 300, 325, and 350 °C. J. Solution Chem. 30, 31–53 (2001)
Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties, selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, 1–392 (1982)
Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1970)
Rodebush, W.H.: The freezing points of concentrated solutions and the free energy of solution of salts. J. Am. Chem. Soc. 40, 1204–1213 (1918)
Ha, Z., Chan, C.K.: The water activities of MgCl2, Mg(NO3)2, MgSO4, and their mixtures. Aerosol Sci. Technol. 31, 154–169 (1999)
Platford, R.E.: Isopiestic measurements on the system water–sodium chloride–magnesium chloride at 25 °C. J. Phys. Chem. 72, 4053–4057 (1968)
Wu, Y.C., Rush, R.M., Scatchard, G.: Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25 °C. I. Isopiestic measurements on the four systems with common ions. J. Phys. Chem. 72, 4048–4053 (1968)
Gibbard Jr., H.F., Gossmann, A.F.: Freezing points of electrolyte mixtures I. Mixtures of sodium chloride and magnesium chloride in water. J. Solution Chem. 3, 385–393 (1974)
Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of NaCl and MgCl2 at 25 °C. J. Chem. Eng. Data 32, 85–92 (1987)
Padova, J., Saad, D.: Thermodynamics of mixed electrolyte solutions. VIII. An isopiestic study of the ternary system: KCl–MgCl2–H2O at 25 °C. J. Solution Chem. 6, 57–51 (1977)
Kuschell, F., Seidel, J.: Osmotic and activity coefficients of aqueous K2SO4–MgSO4 and KCl–MgCl2 at 25 °C. J. Chem. Eng. Data 30, 440–445 (1985)
Prutton, C.F., Tower, O.F.: The system calcium chloride–magnesium chloride–water at 0, −15 and −30 °C. J. Am. Chem. Soc. 54, 3040–3047 (1932)
Robinson, R.A., Bower, V.E.: Properties of aqueous mixtures of pure salts. Thermodynamics of the ternary system: Water–sodium chloride–calcium chloride at 25 °C. J. Res. Nat. Bur. Stand. A 70, 304–311 (1966)
Saad, D., Padova, J., Marcus, Y.: Thermodynamics of mixed electrolyte solutions. VI. An isopiestic study of a pseudo-ternary system: NaCl–KCl–MgCl2–H2O at 25 °C. J. Solution Chem. 4, 983–933 (1975)
Washburn, E.W.: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, vol. 3. McGraw-Hill, New York (1928)
Washburn, E.W.: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, vol. 4. McGraw-Hill, New York (1928)
Fricke, R.: Zum thermodynamischen Verhalten konzentrierter Lösungen. Z. Elektrochem. 35, 631–640 (1929)
Lange, E., Streeck, H.: Verdünnungswärmen einiger zwei-ein-wertiger Salze in grosser Verdünnung bei 25 °C. I. MgCl2, CaCl2, SrCl2, BaCl2 and MgBr2, CaBr2, SrBr2, BaBr2. Z. physik. Chem. 152, 1–23 (1931)
Robinson, R.A., Stokes, R.H.: A thermodynamic study of bivalent metal halides in aqueous solution. Part I. The activity coefficients of magnesium halides at 25 °C. Trans. Faraday Soc. 6, 733–734 (1940)
Stokes, R.H.: A thermodynamic study of bivalent metal halides in aqueous solution. Part XIV. Concentrated solutions of magnesium chloride at 25 °C. Trans. Faraday Soc. 41, 642–645 (1945)
Eigen, V.M., Wicke, E.: Ionenhydratation und spezifische Wärme wäßriger Elektrolytlösungen. Z. Elektrochem. 55, 354–363 (1951)
Dunn, L.A.: Apparent molar volumes of electrolytes. Part 1. Some 1-1, 1-2, 2-1, 3-1 electrolytes in aqueous solution at 25 °C. Trans. Faraday Soc. 62, 2348–2353 (1966)
Ellis, A.J.: Partial molal volumes of MgCl2, CaCl2, SrCl2, and BaCl2 in aqueous solution to 200 °C. J. Chem. Soc. A Inorg. Phys. Theor., 660–664 (1967)
Lindsay Jr., W.T., Liu, C.T.: Vapor pressure lowering of aqueous solutions at elevated temperatures. OSW R&D Rep. 347, 133–138 (1968)
Fedyainov, N.W., Vasilev, V.A., Karapetyants, M.Kh.: Specific heat of two- and three- component aqueous solutions of beryllium subgroup metal chlorides at 25 °C. Russ. J. Phys. Chem. 44, 1026–1027 (1970)
Frolov, Y.G., Nikolaev, V.P., Karapetyants, M.Kh., Vlasenko, K.K.: Excess thermodynamic functions of mixing of aqueous isopiestic electrolyte solutions without common ions. Russ. J. Phys. Chem. 45, 1054–1055 (1971)
Liu, C.T., Lindsay Jr., W.T.: Thermodynamic properties of aqueous solutions at high temperatures. OSW R&D Rep. 722, 59–64 (1971)
Likke, S., Bromley, L.A.: Heat capacities of aqueous NaCl, KCl, MgCl2, MgSO4, and Na2SO4 solutions between 80 and 200 °C. J. Chem. Eng. Data 18, 189–195 (1973)
Vasilev, Y.A., Fedyainov, N.W., Kurenkov, V.V.: Specific heats and specific volumes of isopiestic aqueous solutions of beryllium subgroup metal chlorides. Russ. J. Phys. Chem. 47, 1570–1573 (1973)
Perron, G., Desnoyers, J.E., Millero, F.J.: Apparent molal volumes and heat capacities of alkaline earth chlorides in water at 25 °C. Can. J. Chem. 52, 3738–3741 (1974)
Leung, W.H., Millero, F.J.: The enthalpy of formation of magnesium sulfate ion pairs. J. Solution Chem. 4, 145–159 (1975)
Snipes, H.P., Manly, C., Enson, D.D.: Heats of dilution of aqueous electrolytes: Temperature dependence. J. Chem. Eng. Data 20, 287–291 (1975)
Chen, C.-T., Emmet, R.T., Millero, F.J.: The apparent molal volumes of aqueous solutions of NaCl, KCl, MgCl2, Na2SO4, and MgSO4 from 0 to 1000 bars at 0, 25, and 50 °C. J. Chem. Eng. Data 22, 201–207 (1977)
Goldberg, R.N., Nuttall, R.L.: Evaluated activity and osmotic coefficients for aqueous solutions: The alkaline earth metal halides. J. Phys. Chem. Ref. Data 7, 263–310 (1978)
Clynne, M.A., Potter II, R.W.: Solubility of some alkali and alkaline earth chlorides in water at moderate temperatures. J. Chem. Eng. Data 24, 338–340 (1979)
Phang, S., Stokes, R.H.: Density viscosity, conductance, and transference number of concentrated aqueous magnesium chloride at 25 °C. J. Solution Chem. 9, 497–505 (1980)
Perron, G., Roux, A., Desnoyers, J.E.: Heat capacities and volumes of NaCl, MgCl2, CaCl2, and NiCl2 up to 6 molal in water. Can. J. Chem. 59, 3049–3054 (1981)
Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous MgCl2 solutions at 25 °C. J. Chem. Eng. Data 26, 38–43 (1981)
Matuzenko, M.Yu., Puchkov, D.V., Zarembo, V.I.: Collected Abstracts: 9th All-Union Conf. on Calorimetry and Chemical Thermodynamics, Tbilisi, pp. 157–159 (1982)
Surdo, A.L., Alzola, E.M., Millero, F.J.: The PVT properties of concentrated aqueous electrolytes. I. Densities and apparent molar volumes of NaCl, Na2SO4, MgCl2, and MgSO4 solutions from 0.1 mol/kg to saturation and from 273.15 to 323.15 K. J. Chem. Thermodyn. 14, 649–662 (1982)
Mayrath, J.E., Wood, R.H.: Enthalpy of dilution of aqueous solutions of Na2SO4, K2SO4, and MgSO4 at 373.15 and 423.65 K and of MgCl2 at 373.15, 423.65, and 472.95 K. J. Chem. Eng. Data 28, 56–59 (1983)
Romankiw, L.A., Chou, I.-M.: Densities of aqueous NaCl, KCl, MgCl2, and CaCl2 binary solutions in the concentration range 0.5–6.1 m at 25, 30, 35, 40, and 45 °C. J. Chem. Eng. Data 28, 300–305 (1983)
Urusova, M.A., Valyashko, V.M.: Solubility, vapour pressure, and thermodynamic properties of solutions in the MgCl2–H2O system at 300–350 °C. Russ. J. Inorg. Chem. 28, 1045–1048 (1983)
Gates, J.A., Wood, R.H.: Densities of aqueous solutions of NaCl, MgCl2, KCl, NaBr, LiCl, and CaCl2 from 0.05 to 5.0 mol/kg and 0.1013 to 40 MPa at 298.15 K. J. Chem. Eng. Data 30, 44–49 (1985)
Juillard, J., Tissier, C., Barczynska, J., Mokrzan, J., Taniewska-Osinska, S.: Solute–solvent interactions in water-t-butyl alcohol mixtures. Part 14. ΔG, ΔH and ΔS of transfer for alkaline earth metal cations. J. Chem. Soc. Faraday Trans. I 81, 3081–3090 (1985)
Connaughton, L.M., Hershey, J.P., Millero, F.J.: PVT properties of concentrated aqueous electrolytes: V. Densities and apparent molal volumes of the four major sea salts from dilute solution to saturation and from 0 to 100 °C. J. Solution Chem. 15, 989–1002 (1986)
Emons, H.H., Voigt, W., Wollny, W.F.: Dampfdruckmessungen am System Magnesiumchlorid–Wasser. Z. physik. Chem. Leipzig 267, 1–8 (1986)
Fanghanel, T., Kravchuk, K., Voigt, W., Emons, H.H.: Solid–liquid phase equilibria in the system KCl–MgCl2–H2O at elevated temperatures. I. The binary system MgCl2–H2O at 130–250 °C. Z. Anorg. Allgem. Chem. 547, 21–26 (1987)
Saluja, P.P.S., LeBlanc, J.C.: Apparent molar heat capacities and volumes of aqueous solutions of MgCl2, CaCl2, and SrCl2 at elevated temperatures. J. Chem. Eng. Data 32, 72–76 (1987)
White, D.E., Gates, J.A., Tillet, D.M., Wood, R.H.: Heat capacity of aqueous CaCl2 from 306 to 603 K at 17.5 MPa. J. Chem. Eng. Data 33, 485–490 (1988)
Fanghanel, T., Grjotheim, K.: Thermodynamics of aqueous reciprocal salt systems. III. Isopiestic determination of osmotic and activity coefficients of aqueous MgCl2, MgBr2, KCl and KBr at 100.3 °C. Acta Chem. Scand. 44, 892–895 (1990)
Pepinov, R.I., Labkova, N.V., Zokhraggekova, G.Y.: Density of water solutions of magnesium-chloride and magnesium-sulfate at high-temperatures and pressures. High Temp. 30, 66–70 (1992)
Jahn, H., Wolf, G.: The enthalpy of solution of MgCl2 and MgCl2⋅6H2O in water at 25 °C. I. The integral molar enthalpy of solution. J. Solution Chem. 22, 893–994 (1993)
Saluja, P.P.S., Jobe, D.J., LeBlanc, J.C., Lemire, R.J.: Apparent molar heat capacities and volumes of mixed electrolytes: [NaCl(aq) + CaCl2(aq)], [NaCl(aq) + MgCl2(aq)], and [CaCl2(aq) + MgCl2(aq)]. J. Chem. Eng. Data 40, 398–406 (1995)
Holmes, H.F., Mesmer, R.E.: Aqueous solutions of the alkaline earth metal chlorides at elevated temperatures. Isopiestic molalities and thermodynamic properties. J. Chem. Thermodyn. 28, 1325–1358 (1996)
Obsil, M., Majer, V., Hefter, G.T., Hynek, V.: Volumes of MgCl2(aq) at temperatures from 298 K to 623 K and pressures up to 30 MPa. J. Chem. Thermodyn. 29, 575–593 (1997)
Wang, P., Oakes, C.S., Pitzer, K.S.: Thermodynamics of aqueous mixtures of magnesium chloride with sodium chloride from 298.15 to 573.15 K. New measurements of the enthalpies of mixing and of dilution. J. Chem. Eng. Data 42, 1101–1110 (1997)
Call, T.G., Ballerat-Busserolles, K., Origlia, M.L., Ford, T.D., Woolley, E.M.: Apparent molar volumes and heat capacities of aqueous magnesium chloride and cadmium chloride at temperatures from 278.15 K to 393.15 K at the pressure 0.35 MPa: A comparison of ion–ion interactions. J. Chem. Thermodyn. 32, 1525–1538 (2000)
Linke, W.F., Seidell, A.S.: Solubilities of Inorganic and Metal-Organic Compounds A-Ir, vol. 1, 4th edn. American Chemical Society, Washington (1958)
Oakes, C.S., Bodnar, R.J., Simonson, J.M.: The system NaCl–CaCl2–H2O: I. The ice liquidus at 1 atm total pressure. Geochim. Cosmochim. Acta 54, 603–610 (1990)
Zarembo, V.I., Livov, S.N., Matuzenko, M.Yu.: Saturated vapor pressure of water and activity coefficients of calcium chloride in the CaCl2–H2O system at 423–623 K. Geochem. Int. 17, 159–162 (1980)
Ketsko, V.A., Urusova, M.A., Valyashko, W.M.: Solubility and vapour pressure of solutions in the CaCl2–H2O system at 250–400 °C. Russ. J. Inorg. Chem. 29, 1398–1399 (1984)
Wood, S.A., Crerar, D.A., Brantley, S.L., Borcsik, M.: Mean molal stoichiometric activity coefficients of alkali halides and related electrolytes in hydrothermal solutions. Am. J. Sci. 284, 668–705 (1984)
Ananthaswamy, J., Atkinson, G.J.: Thermodynamics of concentrated electrolyte mixtures. 5. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.25–373.15 K. J. Chem. Eng. Data 30, 120–128 (1985)
Simonson, J.M., Busey, R.H., Mesmer, R.E.: Enthalpies of dilution of aqueous calcium chloride to low molalities at high temperatures. J. Phys. Chem. 89, 557–560 (1985)
Garvin, D., Parker, V.B., White, H.J.: CODATA Thermodynamic Tables, Selections for Some Compounds of Calcium and Related Mixtures: A Prototype Set of Tables. Hemisphere Publishing, Washington (1987)
White, D.E., Doberstein, A.L., Gates, J.A., Tillet, D.M., Wood, R.H.: Heat capacity of aqueous CaCl2 from 306 to 603 K at 17.5 MPa. J. Chem. Thermodyn. 19, 251–259 (1987)
Holmes, H.F., Busey, R.H., Simonson, J.M., Mesmer, R.E.: CaCl2(aq) at elevated temperatures. Enthalpies of dilution, isopiestic molalities, and thermodynamic properties. J. Chem. Thermodyn. 26, 271–298 (1994)
Pitzer, K.S., Oakes, C.S.: Thermodynamics of calcium chloride in concentrated aqueous solutions and in crystals. J. Chem. Eng. Data 39, 553–559 (1994)
Oakes, C.S., Simonson, J.M., Bodnar, R.J.: Apparent molar volumes of aqueous calcium chloride to 250 °C, 400 bars, and from molalities of 0.242 to 6.150. J. Solution Chem. 24, 897–916 (1995)
Hoffmann, F.P., Voigt, W.: Vapor pressure of highly concentrated aqueous calcium chloride solutions (3.8–25 mol/kg) at temperatures from 373 to 523 K. Int. Elect. J. Phys Chem. Data 2, 31–36 (1996)
Rard, J.A., Clegg, S.L.: Critical evaluation of the thermodynamic properties of aqueous calcium chloride. 1. Osmotic and activity coefficients of 0–10.77 mol⋅kg−1 aqueous calcium chloride solutions at 298.15 K and correlation with extended Pitzer ion-interaction models. J. Chem. Eng. Data 42, 819–849 (1997)
Oakes, C.S., Pitzer, K.S., Sterner, S.M.: The system NaCl–CaCl2–H2O: Part 3. Heats of dilution and mixing at 373 to 573 K and 21.5 MPa using a new high temperature, flow-through calorimeter. Geochim. Cosmochim. Acta 62, 1133–1146 (1998)
Guendouzi, M.E., Marouani, M.: Water activities and osmotic and activity coefficients of aqueous solutions of nitrates at 25 °C by the hygrometric method. J. Solution Chem. 32, 535–546 (2003)
Bezboruah, C.P., Covington, A.K., Robinson, R.A.: Excess Gibbs energies of aqueous mixtures of alkali metal chlorides and nitrates. J. Chem. Thermodyn. 2, 431–437 (1970)
Kirgintsev, A.N., Lukyanov, A.V.: Issledovanie troinykh rastvorov izopesticheskim metodom. III. Troinye rastvory NaCl–NaNO3–H2O, NaCl–NaBr–H2O, NH4Cl–NH4Br–H2O. Russ. J. Phys. Chem. 39, 653–655 (1965)
Lincoln, A.T., Klein, D.: The vapor pressure of aqueous nitrate solutions. J. Phys. Chem. 11, 318–348 (1907)
Robinson, R.A.: The activity coefficients of alkali nitrates, acetates and p-toluenesulfonates in aqueous solution from vapor pressure measurements. J. Am. Chem. Soc. 57, 1165–1168 (1935)
Kangro, W., Groeneveld, A.: Concentrated aqueous solutions. I. Z. physik. Chem. N.F. 32, 110–126 (1962)
Shpigel, L.P., Mishchenko, K.P.: Activities and rational activity coefficients of water in potassium nitrate and sodium nitrate solutions at 1, 25, 50, and 75 °C over a wide concentration range. Russ. J. Appl. Chem. 40, 659–661 (1967)
Puchkove, L.V., Matveeva, R.P., Baranova, T.L.: Specific heats of aqueous solutions of sodium and potassium nitrates at temperatures in the range 25–340 °C. Russ. J. Appl. Chem. 46, 460–462 (1973)
Egorov, V.Ya., Zarembo, V.I., Soboleva, N.G., Puchkov, L.V.: Activity of water and activity coefficients of dissolved electrolytes in aqueous solutions of alkali metal nitrates at temperatures of 423–623 K. Russ. J. Appl. Chem. 54, 1031–1034 (1981)
Azizov, N.D., Akhundov, T.S.: Experimental study of solvent vapor pressure and calculation of thermodynamic properties for NaNO3–H2O and KNO3–H2O mixtures. Russ. J. Inorg. Chem. 43, 1600–1603 (1998)
Kirgintsev, A.N., Lukyanov, A.V.: Isopiestic investigation of ternary solutions. V. Ternary NaNO3–Ca(NO3)2–H2O, NaNO3–La(NO3)3–H2O, NaNO3–Th(NO3)4–H2O, NaCl–CaCl2–H2O, NaCl–LaCl3–H2O and NaCl–ThCl4–H2O solutions at 25 °C. Russ. J. Phys. Chem. 39, 389–391 (1965)
Kirgintsev, A.N., Lukyanov, A.V.: Issledovanie troinykh rastvorov izopesticheskim metodom. III. Troinye rastvory NaCl–NaNO3–H2O, NaCl–NaBr–H2O, NH4Cl–NH4Br–H2O. Russ. J. Phys. Chem. 38, 867–869 (1964)
Berkeley, E.: On some physical constants of saturated solutions. Philos. Trans. Roy. Soc. London 203, 189–215 (1904)
Chretian, A.: Etude du systeme quaternaire eau, nitrate de sodium, chlorure de sodium, sulfate de sodium. Annal. Chim. Paris 12, 9–155 (1929)
Kracek, F.C.: Gradual transition in sodium nitrate. I. Physicochemical criteria of the transition. J. Am. Chem. Soc. 53, 2609–2624 (1931)
Pearce, J.N., Hopson, H.: The vapor pressures of aqueous solutions of sodium nitrate and potassium. Thiocyanate. J. Phys. Chem. 41, 535–538 (1937)
Puchkov, L.V., Matashkin, V.G.: Densities of LiNO3–H2O and NaNO3–H2O solutions at temperatures in the range 25–300 °C. Russ. J. Appl. Chem. 43, 1864–1867 (1970)
Greyson, J., Snell, H.: Heat of transfer between heavy and normal water for some inorganic acid salts. J. Chem. Eng. Data 16, 73–74 (1971)
Shenkin, Ya.S., Ruchnova, S.A., Rodionova, N.A.: Solubility isobars for the sodium nitrite–sodium nitrate–water system. Russ. J. Inorg. Chem. 18, 123–124 (1973)
Natarajan, T.S., Srinivasan, D.: Effect of sodium nitrate on the vapor–liquid equilibria of the methanol–water system. J. Chem. Eng. Data 25, 281–221 (1980)
Wu, Y.C., Hamer, W.J.: Comments: revised values of the osmotic coefficients and mean activity coefficients of sodium nitrate in water at 25 °C. J. Phys. Chem. Ref. Data 9, 513–518 (1980)
Voigt, W., Dittrich, A., Haugsdal, B., Grjotheim, K.: Thermodynamics of aqueous reciprocal salt systems. II. Isopiestic determination of the osmotic and activity coefficients in LiNO3–NaBr–H2O and LiBr–NaNO3–H2O at 100.3 °C. Acta Chem. Scand. 44, 12–17 (1990)
Apelblat, A.: The vapour pressures of saturated aqueous lithium chloride, sodium bromide, sodium nitrate, ammonium nitrate, and ammonium chloride at temperatures from 283 K to 313 K. J. Chem. Thermodyn. 25, 63–71 (1993)
Bozmann, E., Richter, J., Stark, A.: Experimental results and aspects of analytical treatment of vapour pressure measurements in hydrated melts at elevated temperatures. Ber. Bunsenges. Phys. Chem. 97, 240–245 (1993)
Tang, I.N., Munkelwitz, H.R.: Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res. 99, 18801–18808 (1994)
Pena, M.P., Vercher, E., Martinez-Andreu, A.J.: Vapor–liquid equilibrium for ethanol + water + sodium nitrate. J. Chem. Eng. Data 41, 1097–1100 (1996)
Archer, D.G.: Thermodynamic properties of the NaNO3 + H2O system. J. Phys. Chem. Ref. Data 29, 1141–1156 (2000)
Carter, R.W., Archer, D.G.: Heat capacity of NaNO3(aq) in stable and supercooled states. Ion association in the supercooled solution. Phys. Chem. Chem. Phys. 2, 5138–5145 (2000)
Guendouzi, M.E., Dinane, A.J.: Determination of water activities, osmotic and activity coefficients in aqueous solutions using the hygrometric method. J. Chem. Thermodyn. 32, 297–310 (2000)
Apelblat, A., Korin, E.: Vapor pressures of saturated aqueous solutions of ammonium iodide, potassium iodide, potassium nitrate, strontium chloride, lithium sulphate, sodium thiosulphate, magnesium nitrate, and uranyl nitrate from T=(278 to 323) K. J. Chem. Thermodyn. 30, 459–471 (1998)
Rodnyanskii, I.M., Korobkov, V.I., Galinker, I.S.: Specific volumes of aqueous electrolyte solutions at high temperatures. Russ. J. Phys. Chem. 36, 1192–1194 (1962)
Amdur, S.M., Padova, J.I., Schwarz, A.M.: Isopiestic study of the system potassium chloride–potassium nitrate–water at 25 °C. J. Chem. Eng. Data 15, 417–418 (1970)
Fanghanel, T., Grjotheim, K., Voigt, W., Brendler, V.: Thermodynamics of aqueous reciprocal salt systems. VI. Isopiestic determination of osmotic coefficients in mixtures of chlorides, bromides and nitrates of lithium, sodium, potassium and cesium at 100.3 °C. Acta Chem. Scand. 46, 423–431 (1992)
Parker, V.B.: Thermal properties of aqueous uni-univalent electrolytes. National Standard Ref. Data Series National Bureau of Standards, vol. 2 (1965)
Hamer, W.J., Wu, Y.-C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1099 (1972)
Petrov, G.I., Puchkov, L.V.: Adiabatic calorimeter for measuring specific heats of liquids in the temperature range from 0 to 100 °C. Russ. J. Appl. Chem. 46, 2373–2375 (1973)
Simonson, J.M., Pitzer, K.S.: Thermodynamics of multicomponent, miscible, ionic systems: The system LiNO3–KNO3–H2O. J. Phys. Chem. 90, 3009–3013 (1986)
Barry, J.C., Richter, J., Stich, E.: Vapor pressures and ionic activity coefficients in the system KNO3 + H2O from dilute solutions to fused salts at 425 K, 452 K, and 492 K. Ber. Bunsenges. Phys. Chem. 92, 1118–1122 (1988)
Vercher, E., Pena, M.P., Martinez-Andreu, A.: Isobaric vapor–liquid equilibrium for ethanol + water + potassium nitrate. J. Chem. Eng. Data 41, 66–69 (1996)
Ewing, W.W., Klinger, E., Brandner, J.D.: Studies on the vapor pressure–temperature relations and on the heats of hydration, solution and dilution of the binary system magnesium nitrate–water. J. Am. Chem. Soc. 56, 1053–1057 (1934)
Robinson, R.A., Wilson, J.M., Ayling, H.S.: The activity coefficients of some bivalent metal nitrates in aqueous solution at 25 °C from isopiestic vapor pressure measurements. J. Am. Chem. Soc. 64, 1469–1471 (1942)
Forsythe, W.E.: Smithsonian Phys. Tables, 9th edn., pp. 373–374. Smithsonian Institution Press, Washington (1954)
Jain, S.K.: Volumetric properties of some single molten hydrated salts. J. Chem. Eng. Data 22, 383–385 (1977)
Sadowska, T., Libuś, W.: Thermodynamic properties and solution equilibria of aqueous bivalent transition metal nitrates and magnesium nitrate. J. Solution Chem. 11, 457–468 (1982)
Jubin, R.T., Marley, J.L., Counce, R.M.: Density study of Mg(NO3)2–H2O–HNO3 solutions at different temperatures. J. Chem. Eng. Data 31, 86–88 (1986)
Akhundov, T.S., Akhmedova, I.N., Iskenderov, A.I.: Thermal properties of aqueous solutions of magnesium nitrate in a wide range of pressures and temperatures. Izv. Vyss. Ucheb. Zaved. Neft. Gaz. 12, 66–69 (1989)
Apelblat, A.: The vapor pressures of water over saturated aqueous solutions of barium chloride, magnesium nitrate, calcium nitrate, potassium carbonate, and zinc sulfate, at temperatures from 283 K to 313 K. J. Chem. Thermodyn. 24, 619–626 (1992)
Todorovic, M., Ninkovic, R.: Osmotic and activity coefficients of {xMg(NO3)2+(1−x)MgSO4}(aq) at the temperature 298.15 K. J. Chem. Thermodyn. 27, 369–375 (1995)
Todorovic, M., Ninkovic, R., Miladinovic, J.: Osmotic and activity coefficients of {yK2SO4+(1−y)Mg(NO3)2}(aq) at the temperature 298.15 K. J. Chem. Thermodyn. 30, 847–853 (1998)
Ewing, W.W.: Calcium nitrate. II. The vapor pressure–temperature relations of the binary system calcium nitrate–water. J. Am. Chem. Soc. 49, 1963–1973 (1927)
Robinson, R.A.: The activity coefficient of calcium nitrate in aqueous solution at 25 °C from isopiestic vapor pressure measurements. J. Am. Chem. Soc. 62, 3130–3131 (1940)
Stokes, R.H., Robinson, R.A.: Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70, 1870–1878 (1948)
Oakes, C.S., Felmy, A.R., Sterner, S.M.: Thermodynamic properties of aqueous calcium nitrate {Ca(NO3)2} to the temperature 373 K including new enthalpy of dilution. Data J. Chem. Thermodyn. 32, 29–54 (2000)
Pelsha, A.D.: Handbook of Experimental Data for Salt Solubilities, Ternary Systems, vol. 1. Khimia, Leningrad (1973)
Clynne, M.A., Potter II, R.W., Haas Jr., J.L.: Solubility of NaCl in aqueous electrolyte solutions from 10 to 100 °C. J. Chem. Eng. Data 26, 396–398 (1981)
Robinson, R.A., Bower, V.E.: An additivity rule for the vapor pressure lowering of aqueous solutions. J. Res. Nat. Bur. Stand. A 69, 365–367 (1965)
Assarsson, G.O.: Equilibria in aqueous systems containing K+, Na+, Ca++, Mg++ and Cl−. II. The quaternary system CaCl2–KCl–NaCl–H2O. J. Am. Chem. Soc. 72, 1437–1441 (1950)
Shiah, I.M., Tseng, H.C.: Experimental and theoretical determination of vapor pressures of NaCl–KCl, NaBr–KBr and NaCl–CaCl2 aqueous solutions at 298 to 343 K. Fluid Phase Equilib. 124, 235–249 (1996)
Holluta, J., Mautner, S.: Investigations of the solubility influence of strong electrolytes. I. The mutual solubility effect of alkali salts having a common ion. I. Z. physik. Chem. 127, 455–475 (1927)
Blasdale, W.C.: Equilibria in solutions containing mixtures of salts III. The system, water and the chlorides and carbonates of sodium and potassium at 25 °C. IV. The system, water and the sulfates and carbonates of sodium and potassium at 25 °C. J. Am. Chem. Soc. 45, 2935–2946 (1923)
Teeple, J.E.: The Industrial Development of Searles Lake Brines. Chem. Catalogue Company, New York (1929)
Cornec, E., Krombach, H.: Equilibria between water, potassium chloride and sodium chloride between −23° and +190°. Ann. Chim. Appl. 18, 5–31 (1932)
Cornec, E., Krombach, H.: Equilibria between water, potassium chloride and sodium chloride between −23° and +190°. Compt. Rend. 194, 714–716 (1932)
Erdos, E.: Solubility of electrolytes. I. Presentation and correlation of solubility data in multicomponent systems. Chem. Listy Vedu Prum. 51, 1632–1640 (1957)
Brunisholz, G., Bodmer, M.: The system H+–Na+–K+–Cl−–PO 3−4 –H2O. I. General observations and the ternary systems NaCl–KCl–H2O, KCl–KH2PO4–H2O, NaCl–NaH2PO4–H2O, and NaH2PO4–KH2PO4–H2O. Helv. Chim. Acta 46, 2566–2574 (1963)
Holmes, H.F., Baes Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures II. NaCl + KCl mixtures. J. Chem. Thermodyn. 11, 1035–1050 (1979)
Sterner, S.M., Hall, D.L., Bodnar, R.J.: Synthetic fluid inclusions: V. Solubility relations in the system NaCl–KCl–H2O under vapor–saturated conditions. Geochim. Cosmochim. Acta 52, 989–1005 (1988)
Flesia, M.A., DeChialvo, M.R.G., Chialvo, A.C.: Isopiestic determination of osmotic coefficients and evaluation of activity coefficients of aqueous mixtures of sodium and potassium chloride at 45 °C. Fluid Phase Equilib. 131, 189–196 (1997)
Keitel, H.: Rate of dissolution and displacement of sylvine and rock salt from natural sylvinite and “hard salt”. Mitteil. Kali-Forschungs-Anstalt, 95–127 (1922)
Akhumov, E.I., Vasiliev, B.B.: Izvestiia Sektora Fiz. Khim. Analiza Inst. Obsh. Neorgan. Khim. Akad. Nauk SSSR 9, 308 (1936), cited in: Ref. [294], p. 108
d’Ans, J., Sypiena, G.: Solubilities in the system KCl–MgCl2–H2O and NaCl–MgCl2–H2O at temperatures up to about 200°. Kali 36, 89–95 (1942)
Majima, K., Tejima, M., Oka, S.: Natural gas brine. IV. Phase equilibriums in ternary systems MgCl2–CaCl2–H2O and NaCl–MgCl2–H2O and a quaternary system NaCl–MgCl2–CaCl2–H2O at 50°. Nippon Kaisui Gakkaishi 23, 113–117 (1969)
Sieverts, A., Muller, E.L.: Das reziproke Salzpaar MgCl2, Na2(NO3)2, H2O. II. Z. Anorg. Allgem. Chem. 200, 305–320 (1931)
Meyer, T.A., Prutton, C.F., Lightfoot, W.J.: Equilibria in saturated solutions. V. The quinary system CaCl2–MgCl2–KCl–NaCl–H2O at 35 °C. J. Am. Chem. Soc. 71, 1236–1237 (1949)
Leimbach, G.: Beitrag zur Kenntnis der ozeanischen Salzablagerungen. Kali 1, 8–13 (1926)
van’t Hoff, J.H.: Zur Bildung der ozeanischen Salzablagerungen. Z. Anorg. Chem. 47, 244–280 (1905)
van’t Hoff, J.H., Dawson, H.M.: Schmelzpunktserniedrigung des Magnesiumchlorids durch Zusatz von Fremdkörpern. Z. Physik. Chem. 22, 598–608 (1897)
van’t Hoff, J.H., Sachs, H., Biach, O.: Untersuchungen über die Bildungsverhältnisse der ozeanischen Salzablagerungen. XXXV. Die Zusammensetzung der konstanten Lösungen bei 83°. Sitz. Konig. Preuss. Ak., 576–586 (1904)
d’Ans, J.: Researches on the salt systems of oceanic salt deposits. Kali 9, 148–154 (1915)
Maeda, T.: Salt manufacturing processes. J. Chem. Ind. Japan 23, 1129–1146 (1920)
Takegami, S.: Reciprocal salt pairs: Na2Cl2 + MgSO4→Na2SO4 + MgCl2 at 25°. Memoirs Coll. Sci. Kyoto Imp. University 4, 317–342 (1921)
Keitel, H., Gerlach: The systems KCl–MgCl2–H2O and NaCl–MgCl2–H2O. Kali 17, 248–251, 261–265 (1923)
Kurnakow, N.S., Zemcuzny, S.F.: Die Gleichgewichte des reziproken Systems Natriumchlorid–Magnesiumsulfat mit Berücksichtigung der naturlichen Salzsolen. Z. Anorg. Allgem. Chem. 140, 149–182 (1924)
Leimbach, G., Pfeiffenberger, A.: Quaternary system: sodium nitrate–sodium sulfate–magnesium chloride–water from 0°to 100°. Caliche 11, 61–85 (1929)
Bergman, A.G., Koloskaova, Z.A., Dombrovskaya, N.S.: Za nedra Volgo Prikaspiya 2, 312–313 (1937), cited in: Ref. [165], p. 290
Klementiev, V.: Tr. Vses. Alyumin. Magniev. Inst. 14, 5–12 (1937), cited in: Ref. [165] p. 290
Nikolaev, V.I., Burovaya, E.E.: Surface tension and viscosity in the reciprocal system sodium chloride–magnesium sulfate. Ann. Sect. Anal. Phys.-Chim., Inst. Chim. Gen. (U.S.S.R.) 10, 245–258 (1938)
Rode, T.V.: Vapor pressure and solubility of the aqueous reversible system 2NaCl + MgSO4→Na2SO4 + MgCl2. Izvest. Sektora Fiz.-Khim. Anal., Inst. Obsh. Neorg. Khim., Akad. Nauk S.S.S.R. 15, 234–265 (1947)
Reza-Zade, P.F., Rustamov, P.G.: Solubility isotherm of the system NaCl–MgCl2–CoSO4–H2O at 25°. Azerb. Khim. Zhur. (No. 6), 119–125 (1960)
Ryspaev, O., Batyrchaev, I.G., Druzhinin, I.G.: Study of the quinary reciprocal system Na+, Mg++, Ca++ || Cl−, SO 2−4 –H2O at 75 °C. Russ. J. Appl. Chem. 48, 2029–2031 (1975)
Susarla, V.R.K.S., Sanghavi, J.R.: Study of the aqueous system Ca++, Na+, Mg++/Cl−, SO 2−4 at 35 °C. Seventh Symp. Salt 1, 539–543 (1993)
Dinane, A., Mounir, A.: Water activities osmotic and activity coefficients in aqueous mixtures of sodium and magnesium chlorides at 298.15 K by the hygrometric method. Fluid Phase Equilib. 206, 13–25 (2003)
Igelsrud, I., Thompson, T.G.: Equilibria in the saturated solutions of salts occurring in sea water. II. The quaternary system MgCl2–CaCl2–KCl–H2O at 0 °C. J. Am. Chem. Soc. 58, 318–322 (1936)
Assarsson, G.: The winning of salt from the brines in southern Sweden. Sveriges Geol. Undersökn. Ser. C No. 501, Årsbok 42, 1–15 (1948)
Pelling, A.J., Robertson, J.B.: The reciprocal salt-pair: 2NaCl + Ca(NO3)2→2NaNO3+CaCl2. South Afr. J. Sci. 20, 236–240 (1923)
Lukyanova, E.I., Shoikhet, D.N.: Trudy Gos. Inst. Prikl. Khim. 34, 10–16 (1940), cited in: Ref. [294], p. 121
van Mills, R., Wells, R.C.: Evaporation and concentration of water associated with petroleum and natural gas. Bull. US Geol. Surv. 693, 1–100 (1919)
Pelling, J., Robertson, J.: Chem. J. Met. Min. Soc. South Afr., 196 (1926), cited in: Ref. [165], p. 301
Koroleve, V.F.: Trudy Solyanoi Laboratory Akademii Nauk SSSR 15, 38 (1937), cited in: Ref. [165], p. 303
Gromova, E.T.: The solubility isotherm of the Na, Ca || Cl, SO4–H2O system at 110 °C. Russ. J. Inorg. Chem. 5, 1244–1247 (1960)
Robinson, R.A., Bower, V.E.: Properties of aqueous mixtures of pure salts. Thermodynamics of the ternary system: water–calcium chloride–magnesium chloride at 25 °C. J. Res. Nat. Bur. Stand. A 70, 313–318 (1966)
Mel’nikova, Z.M., Moshkina, I.A.: The solubility of anhydrite and gypsum in the system Na, Mg, Ca || Cl, SO4–H2O at 25 °C. Izv. Akad. Nauk SSSR 4, 17–25 (1973)
Holmes, H.F., Baes Jr., C.F., Mesmer, R.E.: Studies of aqueous solutions at elevated temperatures. III. {(1−y)NaCl+(y)CaCl2}. J. Chem. Thermodyn. 13, 101–113 (1981)
Brantley, S.L.: Chapter Two—Activity Coefficients of NaCl–CaCl2 Aqueous Solutions with Application to High Temperature Natural Brines, PhD Thesis, Princeton, pp. 39–62 (1987)
Vanko, D.A., Bodnar, R.J., Sterner, S.M.: Synthetic fluid inclusions: VIII. Vapor-saturated halite solubility in part of the system NaCl–CaCl2–H2O, with application to fluid inclusions from oceanic hydrothermal systems. Geochim. Cosmochim. Acta 52, 2451–2456 (1988)
Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated solutions I. The ternary systems CaCl2–MgCl2–H2O, CaCl2–KCl–H2O, and MgCl2–KCl–H2O at 35 °C. J. Am. Chem. Soc. 68, 1001–1002 (1946)
Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated salt solutions. II. The ternary systems CaCl2–MgCl2–H2O, CaCl2–KCl–H2O, and MgCl2–KCl–H2O at 75 °C. J. Am. Chem. Soc. 69, 2098–2100 (1947)
Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated solutions. III. The quaternary system CaCl2–MgCl2–KCl–H2O at 35 °C. J. Am. Chem. Soc. 70, 4112–4115 (1948)
Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated salt solutions. IV. The quaternary system CaCl2–MgCl2–KCl–H2O at 75 °C. J. Am. Chem. Soc. 71, 1233–1235 (1949)
Precht, H., Wittjen, B.: Löslichkeit von Salzgemischen der Salze der Alkalien und alkalischen Erden bei verschiedener Temperatur. Berichte der Deutschen Chemischen Gesellschaft 14, 1667–1675 (1881)
Khaidukov, N.I., Linetzkaya, Z.G.: The water-vapor pressure above the solutions NaCl–KCl–MgCl2–H2O. Kali 8, 28–33 (1935)
Kistiakovsky, W.: Die wässerigen Lösungen von Doppelsalzen. Z. Physik. Chem. 6, 97–121 (1890)
Feit, W., Kubierschky, K.: Die Gewinnung von Rubidium- und Caesiumverbindungen aus Carnallit. Chemiker Zeitung 16, 335–340 (1892)
Van’t Hoff, J.H., Meyerhoffer, W.: Ueber Anwendungen der Gleichgewichtslehre auf die oceanischen Salzablagerungen mit besonderer Berücksichtigung des Stassfurter Salzlagers. Z. Physik. Chem. 30, 64–88 (1899)
Uhlig, J.: The solubility diagram of potassium chloride, magnesium chloride and water at 50°. Centr. Min. Geol., 417–422 (1913)
Keitel, H.: The systems KCl–MgCl2–H2O and NaCl–MgCl2–H2O. Kali 17, 248–251, 261–265 (1923)
Campbell, A.N., Downs, K.W., Samis, C.S.: The system MgCl2–KCl–MgSO4–K2SO4–H2O at 100 °C. J. Am. Chem. Soc. 56, 2507–2512 (1934)
Lepeshkov, I.N., Bodaleva, N.V.: Solubility isotherm of the aqueous reciprocal system K2Cl2 + MgSO4→K2SO4 + MgCl2 at 25°. Izvest. Sekt. Fiz.-Khim. Anal., Inst. Obsh. Neorg. Khim., Akad. Nauk S.S.S.R. 17, 338–344 (1949)
Patel, K.P., Seshadri, K.: Phase rule study of quaternary system potassium chloride–aluminum chloride–magnesium chloride–water at 25°. Ind. J. Chem. 6, 379–381 (1968)
Lee, W.B., Egerton, A.C.: Heterogeneous equilibria between the chlorides of calcium, magnesium, potassium, and their aqueous solutions. Part I. J. Chem. Soc. 123, 706–716 (1923)
Barbaudy, J.: The equilibrium: water-potassium chloride–potassium nitrate–calcium nitrate–calcium chloride. Rec. Trav. Chim. Pays-Bas Belg. 42, 638–642 (1923)
Selivanova, A.S.: Tr. Mosk. Inst. Tonkoi Khim. Tekhnol. 3, 23 (1952), cited in: Ref. [305], p. 1125
Zaslavskii, A.I.: Physicochemical conditions of the crystallization of potassium chlorate at 0° and −10°. Trans. State Inst. Appl. Chem. (U.S.S.R.) No. 23, 67–84 (1935)
Assarsson, G.O.: Equilibria in aqueous systems containing K+, Na+, Ca++, Mg++ and Cl−. I. The ternary system CaCl2–KCl–H2O. J. Am. Chem. Soc. 72, 1433–1436 (1950)
Vlasov, N.A., Ogienko, S.V.: Solubility polytherms of the system CaCl2–KCl–H2O from the temperature of complete freezing to +40°. Izv. Fiz.-Khim. Nauchn.-Issled. Inst. Pri Irkutskom Univ. 4, 62–80 (1959)
Kolesnikov, M.M., Beskov, S.D., Druzhinin, I.G.: Uchenyie Zapiski 193, 47 (1968), cited in: Ref. [165], p. 675
Soloveva, E.F.: The 50° isotherm of the aqueous salt system Na+, K+, Mg2+, Ca2+//Cl−–H2O. Tr. Vses. Nauch.-Issled. Inst. Geologii No. 52, 58–74 (1967)
Kurnakov, N.S., Nikolaev, A.V.: Izv. Akad. Nauk SSSR Ser. Khim. 2, 403–313 (1938)
Smith, A., Prutton, C.: Patent 1768797, U.S.A. (1923)
Smith, A., Prutton, C.: Patent 1780098, U.S.A. (1923)
Bury, C.R., Davies, E.R.H.: The system magnesium chloride–lime–water. J. Chem. Soc., 701–705 (1933)
Yanatieva, O.K.: Polytherms of solubility of salts in the tropic systems CaCl2–MgCl2–H2O and CaCl2–NaCl–H2O. Russ. J. Appl. Chem. 19, 709–722 (1946)
Assarsson, G.O.: Equilibria in aqueous systems containing K+, Na+, Ca2+, Mg2+, and Cl−. III. The ternary system CaCl2–MgCl2–H2O. J. Am. Chem. Soc. 72, 1442–1444 (1950)
Perova, A.P.: Mutual solubility of the ternary system CaCl2–MgCl2–H2O at 55°. Soobsh. Nauch. Rabot Vsesoyuz. Khim. Obsh. im. D.I. Mendeleeva (No. 2), 46–48 (1955)
Uyeda, K.: On the equilibrium of the reciprocal salt pair: ClK+NO3K+ClNa. Memoirs Coll. Sci. Eng. Kyoto Imp. University 2, 245–261 (1910)
Leather, J.W., Mukerji, J.N.: The system potassium nitrate, sodium chloride, water. Mem. Dept. Agr. India, Chem. Ser. 3, 177–204 (1913)
Nichol, W.W.J.: On the mutual solubility of salts in water. Part I. Philos. Mag. J. Sci. 31, 369–385 (1891)
Benrath, A.Z.: Über die Löslichkeit von Salzen und Salzgemischen bei Temperaturen oberhalb von 100 °C. Z. Anorg. Chem. 252, 86–94 (1943)
Cornec, E., Krombach, H.: The study of equilibria between water the nitrates, chlorides and sulfates of sodium and potassium. Ann. Chim. Appl. 12, 203–295 (1929)
Carnelley, T., Thomson, A.: The solubility of isomeric organic compounds and of mixtures of sodium and potassium nitrates, and the relation of solubility to fusibility. J. Chem. Soc. 53, 782–802 (1888)
Kremann, R., Zitek, A.: Die Bildung von Konversionssalpeter aus Natronsalpeter und Pottasche vom Standpunkt der Phasenlehre. Monatsh. Chem. 30, 311–340 (1909)
Madgin, W.M., Briscoe, H.V.A.: The melting-point (solidus) curve for mixtures of potassium nitrate and sodium nitrate. J. Chem. Soc. 123, 2914–2916 (1923)
Hamid, M.A.: Heterogeneous equilibria between the sulphates and nitrates of sodium and potassium and their aqueous solution. Part I. The ternary systems. J. Chem. Soc., 199–205 (1926)
Nikolaev, V.I.: Partition of nitric acid between sodium and potassium hydroxide. J. Russ. Phys. Chem. Soc. 60, 893–904 (1928)
Ravich, M.I., Ginzburg, F.B.: State diagram of the ternary system KNO3–NaNO3–H2O. Bull. Acad. Sci. U.R.S.S. Classe Sci. Chim. (No. 2), 141–151 (1947)
Karnaukhov, A.S., Uch. Zap. Yaroslav. Gos. Pedagog. Inst. 31, 255 (1956), cited in: Ref. [305], p. 768
Jackman, D.N., Browne, A.: The 25 °C-isotherms of the systems magnesium nitrate–sodium nitrate–water and magnesium sulphate–magnesium nitrate–water. J. Chem. Soc. 121, 694–697 (1922)
Benrath, A.: Study of MgSO4–NaNO3–H2O. I. Caliche 11, 99–126 (1929)
Schroder, W.: Über das reziproke Salzpaar MgSO4–Na2(NO3)2–H2O. V. Z. Anorg. Allgem. Chem. 185, 153–166 (1929)
Schroder, W.: Über das reziproke Salzpaar MgSO4–Na2(NO3)2–H2O. VI. Z. Anorg. Allgem. Chem. 185, 267–279 (1929)
Sieverts, A., Muller, H.: The reciprocal salt pair MgCl2, Na2(NO3)2, H2O. I. Z. Anorg. Allgem. Chem. 189, 241–57 (1930)
Hamid, M.A., Das, R.: The system: water–potassium nitrate–calcium nitrate. J. Indian Chem. Soc. 7, 881–882 (1930)
Frowein, F.: Das System K2/Ca/Na2/(NO3)2/H2O. Z. Anorg. Allgem. Chem. 169, 336–344 (1928)
Kremann, R., Rodemund, H.: Über das Auftreten eines Tripelsalzes aus wässerigen Lösungen ohne gleichzeitiger Bildung eines binären Doppelsalzes. Z. Anorg. Chem. 86, 373–379 (1914)
Benrath, A., Sichelschmidt, A.: Das reziproke Salzpaar MgSO4+K2(NO3)2→Mg(NO3)2+K2SO4. III. Z. Anorg. Allgem. Chem. 197, 113–128 (1931)
Bergman, A.G., Opredelenkova, L.V.: Solubility polytherms of the calcium nitrate–potassium nitrate–water and calcium nitrate–potassium chloride–water ternary systems. Russ. J. Inorg. Chem. 14, 1144–1146 (1969)
Hamid, M.A., Das, R.: The system: water–potassium nitrate–calcium nitrate. J. Indian Chem. Soc. 7, 881–882 (1930)
Yakimov, M.A., Guzhavina, E.I., Lazeeva, M.S.: Solution–vapour equilibrium in calcium (cadmium) nitrate–alkali metal nitrate–water systems. Russ. J. Inorg. Chem. 14, 1011–1014 (1969)
Goloshchapov, M.V.: Reciprocal solubility in the system Ca(NO3)2–Mg(NO3)2–H2O. Izv. Voronezh. Gosudarst. Pedagog. Inst. 16, 19–31 (1955)
Frolov, A.A., Orlova, V.T., Lepeshkov, I.N.: Solubility polytherm of the system Ca(NO3)2–Mg(NO3)2–H2O. Inorg. Mater. 28, 1040–1042 (1992)
Nikolaev, V.I.: The distribution of strong bases and strong acids in saturated water solutions. Z. Anorg. Allgem. Chem. 181, 249–79 (1929)
Reinders, W.: Die reziproken Salzpaare KCl + NaNO3=KNO3 + NaCl und die Bereitung von Konversionssalpeter. Z. Anorg. Allgem. Chem. 93, 202–212 (1915)
Rüdorff, F.: Über die Löslichkeit von Salzgemischen. Ber. Deutsc. Chem. Gesellschaft 6, 482–486 (1873)
Wurmser, M.: Preparation of ammonium nitrate. Compt. Rend. 174, 1466–1468 (1922)
Cornec, E., Chretion, A.: The system sodium nitrate, sodium chloride and water. Caliche 6, 358–369 (1924)
Findlay, A., Cruickshank, J.: The reciprocal salt pair (Na, Ba)–(Cl, NO3) in aqueous solution at 20 °C. J. Chem. Soc., 316–318 (1926)
Sheludko, M.K., Kulish, N.F.: Tr. Dnepropetrovsk. Khimii Tekhnol. Inst. Vyp. 5, 201 (1956), cited in: Ref. [305], p. 175
Bursa, S., Kitowska, M.: Liquid–solid equilibrium in the NaNO3–NaCl–HNO3–HCl–H2O system. Przemysl Chem. 47, 103–106 (1968)
Straszko, J., Kowalczyk, R.: Liquid–solid equilibrium in the NaNO3–NaCl–HNO3–HCl–H2O system. Przemysl Chem. 53, 97–99 (1976)
Soch, C.A.: Fractional crystallization. J. Phys. Chem. 2, 43–50 (1898)
Kritschewski, I., Izkowitsch, R.K.: Das reziproke Salzpaar Ca(NO3)2+2KCl→2KNO3+CaCl2 bei −10 °C. Z. Anorg. Allgem. Chem. 215, 103–104 (1933)
Bodlaender, G.: Über die Löslichkeit einiger Stoffe in Gemischen von Wasser und Alkohol. Z. Physik. Chem. 7, 308–322 (1891). Über die Löslichkeit von Salzgemischen in Wasser. Z. Physik. Chem. 7, 358–366 (1891)
Touren, C.: Solubility of a mixture of salts having a common ion. Compt. Rendus Hebd. Seances Acad. Sci. 131, 259 (1900)
Armstrong, H.E., Eyre, J.V.: Studies in the processes operative in solutions. XI. The displacement of salts from solution by various precipitants. Proc. Roy. Soc. London (A) 84, 123–135 (1911)
Tanaka, H.: Preparation of potassium nitrate and alumina by double decomposition of potassium chloride and aluminum nitrate. I. The system 3KCl+Al(NO3)3→3KNO3+AlCl3. Kogyo Kagaku Zasshi 33, 488–492 (1930)
Benrath, A., Braun, A.: Über die Löslichkeit von Salzen und Salzgemischen in Wasser bei Temperaturen oberhalb von 100 °C. II. Z. Anorg. Allgem. Chem. 244, 348–358 (1940)
Zhang, L., Gui, Q., Lu, X., Wang, Y., Shi, J., Lu, B.C.-Y.: Measurement of solid-liquid equilibria by a flow-cloud-point method. J. Chem. Eng. Data 43, 32–37 (1998)
Ehret, W.F.: Ternary systems CaCl2–Ca(NO3)2–H2O (25 °C), CaCl2–Ca(ClO3)2–H2O (25 °C), SrCl2–Sr(NO3)2–H2O (25 °C), KNO3–Pb(NO3)2–H2O (0 °C). J. Am. Chem. Soc. 54, 3126–3134 (1932)
Matsuo, T., Takeda, A.: Studies on brine obtained by the ion exchange membrane method. II. Crystallizing areas of potassium chloride, carnalite, and other salts in equilibrium system of brine produced by ion exchange membrane method. Nippon Kaisui Gakkaishi 25, 129–141 (1971)
d’Ans, J., Bertsch, A., Gessner, A.: Untersuchungen über Salzsysteme ozeanischer Salzablagerungen. Kali 9, 148–154 (1915)
Kayser, E.: Substitution factors for dissimilarly saturated solutions of potassium chloride and sodium chloride. Kali 17, 1–9, 37–42 (1923)
Serowy: Die Polythermen der Viersalzpunkte des Chlorkaliumfeldes im quinären System ozeanischer Salzblagerungen; ihre teilweise Nachprüfung und Vervollständigung bis zu Temperaturen über 100°. Kali 17, 345–350 (1923)
Pelsha, A.D.: Handbook of Experimental Data of Salt Solubilities, Quaternary and More Complex Systems, vol. 2. Khimia, Leningrad (1975)
Ilinskii, V.P., Varypaev, N.A., Gitterman, K.E., Shmidt, N.E.: Trudy Solyanoi Laboratory Akademii Nauk SSSR 7, 10 (1936), cited in Ref. [165], p. 302
Van’t Hoff, J.H.: Zur Bildung der ozeanischen Salzablagerungen. Sitzungsber. Preuss. Acad. Wissen., Lichtenstein, pp. 232–235 (1905)
Igelsrud, I., Thompson, T.G.: Equilibria in the saturated solutions of salts occurring in sea water. II. The quaternary system MgCl2–CaCl2–KCl–H2O at 0 °C. J. Am. Chem. Soc. 58, 2003–2009 (1936)
Assarsson, G.O., Balder, A.: The poly-component aqueous systems containing the chlorides of Ca++, Mg++, Sr++, K+ and Na+ between 18 and 93 °C. J. Phys. Chem. 59, 631–633 (1955)
Khitrova, N.N.: Physicochemical investigation of a four-component reciprocal aqueous solution of sodium and potassium chlorides and nitrates. Izvest. Sekt. Fiz. Khim. Anal., Inst. Obsh. Neorg. Khim., Akad. Nauk S.S.S.R. 27, 344–357 (1956)
Etard, M.: Recherches expérimentales sur les solutions saturées. Ann. Chim. Phys. 3, 275–288 (1894)
Karsten: Ann. der Chem. U. Pharm. Suppl. 3, 170 (1865), cited in Ref. [305], p. 1124
Ritzel, A.: Die Krystalltracht des Chlornatriums in ihrer Abhängigkeit vom Lösungmittel. Z. Kristallographie Mineral 49, 152–192 (1911)
Babenko, A.M.: Study of solubility in the system Na+, K+||Cl−, NO −3 –H2O. Russ. J. Appl. Chem. 48, 1820–1824 (1975)
Bergman, A.G., Nagornyi, G.I.: Polytherm of the reciprocal system of magnesium and potassium chlorides and nitrates (the conversion of magnesium nitrate). Bull. Acad. Sci. U.R.S.S., Classe Sci. Math. Nat., Ser. Chim. No. 1, 217–228 (1938)
Silcock, H.L.: Solubilities of Inorganic and Organic Compounds, Ternary and Multicomponent Systems of Inorganic Substances, vol. 3, Part 2. Pergamon, Oxford (1979)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gruszkiewicz, M.S., Palmer, D.A., Springer, R.D. et al. Phase Behavior of Aqueous Na–K–Mg–Ca–Cl–NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling. J Solution Chem 36, 723–765 (2007). https://doi.org/10.1007/s10953-007-9145-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-007-9145-2