Skip to main content
Log in

Phase Behavior of Aqueous Na–K–Mg–Ca–Cl–NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na+, K+, Mg2+, Ca2+, Cl and NO 3 ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 °C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 °C. The measurements have been performed using Oak Ridge National Laboratory’s (ORNL) previously designed gravimetric isopiestic apparatus, which can also detect solid phase precipitation. In addition to various Na–K–Mg–Ca–Cl–NO3 systems, results are reported for LiCl solutions. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid–liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor–liquid and solid–liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmes, H.F., Baes Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures I. KCl, CaCl2, and MgCl2. J. Chem. Thermodyn. 10, 983–996 (1978)

    CAS  Google Scholar 

  2. Holmes, H.F., Baes Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures II. NaCl + KCl Mixtures. J. Chem. Thermodyn. 11, 1035–1050 (1979)

    CAS  Google Scholar 

  3. Holmes, H.F., Mesmer, R.E.: Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250 °C. J. Phys. Chem. 87, 1242–1255 (1983)

    CAS  Google Scholar 

  4. Rard, J.A., Platford, R.F.: In: Pitzer, K.S. (Ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., pp. 209–277. CRC Press, Boca Raton (1991)

    Google Scholar 

  5. Gruszkiewicz, M.S., Simonson, J.M.: Vapor pressures and isopiestic molalities of concentrated CaCl2(aq), CaBr2(aq), and NaCl(aq) to T=523 K. J. Chem. Thermodyn. 37, 906–930 (2005)

    CAS  Google Scholar 

  6. Ge, Z., Wexler, A.S., Johnston, M.V.: Deliquescence behavior of multicomponent aerosols. J. Phys. Chem. A 102, 173–180 (1998)

    CAS  Google Scholar 

  7. Carroll, S., Craig, L., Wolery, T.J.: Deliquescence of NaCl–NaNO3, KNO3–NaNO3, and NaCl–KNO3 salt mixtures from 90 to 120 °C. Geochim. Trans. 6, 19–30 (2005)

    CAS  Google Scholar 

  8. Wang, P., Anderko, A., Young, R.D.: A speciation-based model for mixed-solvent electrolyte systems. Fluid Phase Equilib. 203, 141–176 (2002)

    CAS  Google Scholar 

  9. Wang, P., Springer, R.D., Anderko, A., Young, R.D.: Modeling phase equilibria and speciation in mixed-solvent electrolyte systems. Fluid Phase Equilib. 222–223, 11–17 (2004)

    Google Scholar 

  10. Wang, P., Anderko, A., Springer, R.D., Young, R.D.: Modeling phase equilibria and speciation in mixed-solvent electrolyte systems II. Liquid–liquid equilibria and properties of associating electrolyte solutions. J. Mol. Liq. 125, 37–44 (2006)

    CAS  Google Scholar 

  11. Pitzer, K.S.: Electrolytes. From dilute solutions to fused salts. J. Am. Chem. Soc. 102, 2902–2906 (1980)

    CAS  Google Scholar 

  12. Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures. New expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)

    CAS  Google Scholar 

  13. Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures I. Summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci. 274, 1089–1198 (1974). Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. II. Debye–Hückel parameters for activity coefficients and relative partial molal properties. Ibid. 274, 1199–1261 (1974). Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinite dilution. Ibid. 276, 97–240 (1976); Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600 °C. Ibid. 281, 1241–1516 (1981)

    Article  CAS  Google Scholar 

  14. Tanger, J.C., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 19–98 (1988)

    Article  CAS  Google Scholar 

  15. Shock, E.L., Helgeson, H.C., Sverjensky, D.A.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 53, 2157–2183 (1989)

    ADS  CAS  Google Scholar 

  16. Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52, 2009–2036 (1988). Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species. Ibid. 54, 915–943 (1990)

    ADS  CAS  Google Scholar 

  17. Shock, E.L., Sassani, D.C., Willis, M., Sverjensky, D.A.: Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide ions. Geochim. Cosmochim. Acta 61, 907–950 (1997)

    PubMed  ADS  CAS  Google Scholar 

  18. Sverjensky, D.A., Shock, E.L., Helgeson, H.C.: Prediction of the thermodynamic properties of aqueous metal complexes to 1000 °C and 5 kb. Geochim. Cosmochim. Acta 61, 1359–1412 (1997)

    PubMed  ADS  CAS  Google Scholar 

  19. Linke, W.F., Seidell, A.S.: Solubilities of Inorganic and Metal Organic Compounds K-Z, vol. 2, 4th edn. American Chemical Society, Washington (1965)

    Google Scholar 

  20. Vyazova, V.V., Pelsha, A.D.: Handbook of Experimental Solubility Data for Binary Aqueous and Non-aqueous Systems Containing Group I Elements, vol. 3. Khimia, Leningrad (1961)

    Google Scholar 

  21. Cohen-Adad, R., Lorimer, J.W.: Alkali Metal and Ammonium Chlorides in Water and Heavy Water (Binary Systems). Solubility Data Series, vol. 47. Pergamon, Oxford (1991)

    Google Scholar 

  22. Rard, J.A.: Results from boiling temperature measurements for saturated solutions in the systems NaCl + Ca(NO3)2 + H2O, NaNO3 + KNO3 + H2O, and NaCl + KNO3 + H2O, and dry out temperatures for NaCl + NaNO3 + KNO3 + Ca(NO3)2 + H2O, Report UCRL-TR-217415, Lawrence Livermore National Laboratory (2005)

  23. Rard, J.A.: Results from boiling temperature measurements for saturated solutions in the systems NaCl + KNO3 + H2O, NaNO3 + KNO3 + H2O, and NaCl + NaNO3 + KNO3 + H2O, Report UCRL-TR-207054, Lawrence Livermore National Laboratory (2004)

  24. Archer, D.G.: Thermodynamic properties of the NaCl + H2O System II. Thermodynamic properties of NaCl(aq), NaCl⋅2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)

    Article  ADS  CAS  Google Scholar 

  25. Archer, D.G.: Thermodynamic properties of the NaCl + H2O System I. Thermodynamic properties of NaCl(cr). J. Phys. Chem. Ref. Data 21, 1–21 (1992)

    Article  ADS  CAS  Google Scholar 

  26. Sohnel, O., Novotny, P.: Densities of Aqueous Solutions of Inorganic Substances. Elsevier, Amsterdam (1985)

    Google Scholar 

  27. Zaytsev, I.D., Aseyev, G.G.: Properties of Aqueous Solutions of Electrolytes. CRC Press, Boca Raton (1992)

    Google Scholar 

  28. Holmes, F.G., Baes Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures I. KCl, CaCl2, and MgCl2. J. Chem. Thermodyn. 10, 983–996 (1978)

    CAS  Google Scholar 

  29. Ellis, A.J.: Partial molal volumes of alkali chlorides in aqueous solution to 200 °C. J. Chem. Soc. A Inorg. Phys. Theor. 1579–1584 (1966)

  30. Khaibullin, I.Kh., Borisov, N.M.: Experimental investigation of the thermal properties of aqueous and vapor solutions of sodium and potassium chlorides at phase equilibrium high temperature. High Temp. 4, 489–494 (1966)

    Google Scholar 

  31. Mayrath, J.E., Wood, R.H.: Enthalpy of dilution of aqueous solutions of LiCl, NaBr, NaI, KCl, KBr, and CsCl at about 373, 423, and 473 K. J. Chem. Thermodyn. 14, 563–576 (1982)

    CAS  Google Scholar 

  32. Holmes, H.F., Mesmer, R.E.: Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250 °C. J. Phys. Chem. 87, 1242–1255 (1983)

    CAS  Google Scholar 

  33. Pabalan, R.T., Pitzer, K.S.: Apparent molar heat capacity and other thermodynamic properties of aqueous KCl solutions to high temperatures and pressures. J. Chem. Eng. Data 33, 354–362 (1988)

    CAS  Google Scholar 

  34. Gillespie, S.E., Chen, X., Oscarson, J.L., Izatt, R.M.: Enthalpies of dilution of aqueous solutions of LiCl, KCl, and CsCl at 300, 325 and 350 °C. J. Solution Chem. 26, 47–61 (1997)

    CAS  Google Scholar 

  35. Archer, D.G.: Thermodynamic properties of the KCl + H2O systems. J. Phys. Chem. Ref. Data 28, 1–17 (1999)

    ADS  CAS  Google Scholar 

  36. Pelsha, A.D.: Handbook of Experimental Data of Salt Solubilities, Binary Systems, Elements IIA, vol. 4. Khimiya, Leningrad (1963)

    Google Scholar 

  37. Sako, T., Hakuta, T., Yoshitome, H.J.: Vapor pressures of binary (H2O–HCl, –MgCl2, and –CaCl2) and Ternary (H2O–MgCl2–CaCl2) aqueous solutions. J. Chem. Eng. Data 30, 224–228 (1985)

    CAS  Google Scholar 

  38. Urusova, M.A., Valyashko, V.M.: The vapour pressure and the activity of water in concentrated aqueous solutions containing the chlorides of alkali metals (Li, K, Cs) and alkaline earth metals (Mg, Ca) at increased temperature. Russ. J. Inorg. Chem. 32, 23–26 (1987)

    Google Scholar 

  39. Oscarson, J.L., Gillespie, S.E., Chen, X., Schuck, P.C., Izatt, R.M.: Enthalpies of dilution of aqueous solutions of HCl, MgCl2, CaCl2, and BaCl2 at 300, 325, and 350 °C. J. Solution Chem. 30, 31–53 (2001)

    CAS  Google Scholar 

  40. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties, selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, 1–392 (1982)

    Article  Google Scholar 

  41. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1970)

    Google Scholar 

  42. Rodebush, W.H.: The freezing points of concentrated solutions and the free energy of solution of salts. J. Am. Chem. Soc. 40, 1204–1213 (1918)

    CAS  Google Scholar 

  43. Ha, Z., Chan, C.K.: The water activities of MgCl2, Mg(NO3)2, MgSO4, and their mixtures. Aerosol Sci. Technol. 31, 154–169 (1999)

    CAS  Google Scholar 

  44. Platford, R.E.: Isopiestic measurements on the system water–sodium chloride–magnesium chloride at 25 °C. J. Phys. Chem. 72, 4053–4057 (1968)

    CAS  Google Scholar 

  45. Wu, Y.C., Rush, R.M., Scatchard, G.: Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25 °C. I. Isopiestic measurements on the four systems with common ions. J. Phys. Chem. 72, 4048–4053 (1968)

    CAS  Google Scholar 

  46. Gibbard Jr., H.F., Gossmann, A.F.: Freezing points of electrolyte mixtures I. Mixtures of sodium chloride and magnesium chloride in water. J. Solution Chem. 3, 385–393 (1974)

    CAS  Google Scholar 

  47. Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of NaCl and MgCl2 at 25 °C. J. Chem. Eng. Data 32, 85–92 (1987)

    CAS  Google Scholar 

  48. Padova, J., Saad, D.: Thermodynamics of mixed electrolyte solutions. VIII. An isopiestic study of the ternary system: KCl–MgCl2–H2O at 25 °C. J. Solution Chem. 6, 57–51 (1977)

    CAS  Google Scholar 

  49. Kuschell, F., Seidel, J.: Osmotic and activity coefficients of aqueous K2SO4–MgSO4 and KCl–MgCl2 at 25 °C. J. Chem. Eng. Data 30, 440–445 (1985)

    Google Scholar 

  50. Prutton, C.F., Tower, O.F.: The system calcium chloride–magnesium chloride–water at 0, −15 and −30 °C. J. Am. Chem. Soc. 54, 3040–3047 (1932)

    CAS  Google Scholar 

  51. Robinson, R.A., Bower, V.E.: Properties of aqueous mixtures of pure salts. Thermodynamics of the ternary system: Water–sodium chloride–calcium chloride at 25 °C. J. Res. Nat. Bur. Stand. A 70, 304–311 (1966)

    Google Scholar 

  52. Saad, D., Padova, J., Marcus, Y.: Thermodynamics of mixed electrolyte solutions. VI. An isopiestic study of a pseudo-ternary system: NaCl–KCl–MgCl2–H2O at 25 °C. J. Solution Chem. 4, 983–933 (1975)

    CAS  Google Scholar 

  53. Washburn, E.W.: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, vol. 3. McGraw-Hill, New York (1928)

    Google Scholar 

  54. Washburn, E.W.: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, vol. 4. McGraw-Hill, New York (1928)

    Google Scholar 

  55. Fricke, R.: Zum thermodynamischen Verhalten konzentrierter Lösungen. Z. Elektrochem. 35, 631–640 (1929)

    CAS  Google Scholar 

  56. Lange, E., Streeck, H.: Verdünnungswärmen einiger zwei-ein-wertiger Salze in grosser Verdünnung bei 25 °C. I. MgCl2, CaCl2, SrCl2, BaCl2 and MgBr2, CaBr2, SrBr2, BaBr2. Z. physik. Chem. 152, 1–23 (1931)

    CAS  Google Scholar 

  57. Robinson, R.A., Stokes, R.H.: A thermodynamic study of bivalent metal halides in aqueous solution. Part I. The activity coefficients of magnesium halides at 25 °C. Trans. Faraday Soc. 6, 733–734 (1940)

    Google Scholar 

  58. Stokes, R.H.: A thermodynamic study of bivalent metal halides in aqueous solution. Part XIV. Concentrated solutions of magnesium chloride at 25 °C. Trans. Faraday Soc. 41, 642–645 (1945)

    CAS  Google Scholar 

  59. Eigen, V.M., Wicke, E.: Ionenhydratation und spezifische Wärme wäßriger Elektrolytlösungen. Z. Elektrochem. 55, 354–363 (1951)

    CAS  Google Scholar 

  60. Dunn, L.A.: Apparent molar volumes of electrolytes. Part 1. Some 1-1, 1-2, 2-1, 3-1 electrolytes in aqueous solution at 25 °C. Trans. Faraday Soc. 62, 2348–2353 (1966)

    CAS  Google Scholar 

  61. Ellis, A.J.: Partial molal volumes of MgCl2, CaCl2, SrCl2, and BaCl2 in aqueous solution to 200 °C. J. Chem. Soc. A Inorg. Phys. Theor., 660–664 (1967)

  62. Lindsay Jr., W.T., Liu, C.T.: Vapor pressure lowering of aqueous solutions at elevated temperatures. OSW R&D Rep. 347, 133–138 (1968)

    Google Scholar 

  63. Fedyainov, N.W., Vasilev, V.A., Karapetyants, M.Kh.: Specific heat of two- and three- component aqueous solutions of beryllium subgroup metal chlorides at 25 °C. Russ. J. Phys. Chem. 44, 1026–1027 (1970)

    Google Scholar 

  64. Frolov, Y.G., Nikolaev, V.P., Karapetyants, M.Kh., Vlasenko, K.K.: Excess thermodynamic functions of mixing of aqueous isopiestic electrolyte solutions without common ions. Russ. J. Phys. Chem. 45, 1054–1055 (1971)

    Google Scholar 

  65. Liu, C.T., Lindsay Jr., W.T.: Thermodynamic properties of aqueous solutions at high temperatures. OSW R&D Rep. 722, 59–64 (1971)

    Google Scholar 

  66. Likke, S., Bromley, L.A.: Heat capacities of aqueous NaCl, KCl, MgCl2, MgSO4, and Na2SO4 solutions between 80 and 200 °C. J. Chem. Eng. Data 18, 189–195 (1973)

    CAS  Google Scholar 

  67. Vasilev, Y.A., Fedyainov, N.W., Kurenkov, V.V.: Specific heats and specific volumes of isopiestic aqueous solutions of beryllium subgroup metal chlorides. Russ. J. Phys. Chem. 47, 1570–1573 (1973)

    Google Scholar 

  68. Perron, G., Desnoyers, J.E., Millero, F.J.: Apparent molal volumes and heat capacities of alkaline earth chlorides in water at 25 °C. Can. J. Chem. 52, 3738–3741 (1974)

    CAS  Google Scholar 

  69. Leung, W.H., Millero, F.J.: The enthalpy of formation of magnesium sulfate ion pairs. J. Solution Chem. 4, 145–159 (1975)

    CAS  Google Scholar 

  70. Snipes, H.P., Manly, C., Enson, D.D.: Heats of dilution of aqueous electrolytes: Temperature dependence. J. Chem. Eng. Data 20, 287–291 (1975)

    CAS  Google Scholar 

  71. Chen, C.-T., Emmet, R.T., Millero, F.J.: The apparent molal volumes of aqueous solutions of NaCl, KCl, MgCl2, Na2SO4, and MgSO4 from 0 to 1000 bars at 0, 25, and 50 °C. J. Chem. Eng. Data 22, 201–207 (1977)

    CAS  Google Scholar 

  72. Goldberg, R.N., Nuttall, R.L.: Evaluated activity and osmotic coefficients for aqueous solutions: The alkaline earth metal halides. J. Phys. Chem. Ref. Data 7, 263–310 (1978)

    Article  ADS  CAS  Google Scholar 

  73. Clynne, M.A., Potter II, R.W.: Solubility of some alkali and alkaline earth chlorides in water at moderate temperatures. J. Chem. Eng. Data 24, 338–340 (1979)

    CAS  Google Scholar 

  74. Phang, S., Stokes, R.H.: Density viscosity, conductance, and transference number of concentrated aqueous magnesium chloride at 25 °C. J. Solution Chem. 9, 497–505 (1980)

    CAS  Google Scholar 

  75. Perron, G., Roux, A., Desnoyers, J.E.: Heat capacities and volumes of NaCl, MgCl2, CaCl2, and NiCl2 up to 6 molal in water. Can. J. Chem. 59, 3049–3054 (1981)

    CAS  Google Scholar 

  76. Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous MgCl2 solutions at 25 °C. J. Chem. Eng. Data 26, 38–43 (1981)

    CAS  Google Scholar 

  77. Matuzenko, M.Yu., Puchkov, D.V., Zarembo, V.I.: Collected Abstracts: 9th All-Union Conf. on Calorimetry and Chemical Thermodynamics, Tbilisi, pp. 157–159 (1982)

  78. Surdo, A.L., Alzola, E.M., Millero, F.J.: The PVT properties of concentrated aqueous electrolytes. I. Densities and apparent molar volumes of NaCl, Na2SO4, MgCl2, and MgSO4 solutions from 0.1 mol/kg to saturation and from 273.15 to 323.15 K. J. Chem. Thermodyn. 14, 649–662 (1982)

    Google Scholar 

  79. Mayrath, J.E., Wood, R.H.: Enthalpy of dilution of aqueous solutions of Na2SO4, K2SO4, and MgSO4 at 373.15 and 423.65 K and of MgCl2 at 373.15, 423.65, and 472.95 K. J. Chem. Eng. Data 28, 56–59 (1983)

    CAS  Google Scholar 

  80. Romankiw, L.A., Chou, I.-M.: Densities of aqueous NaCl, KCl, MgCl2, and CaCl2 binary solutions in the concentration range 0.5–6.1 m at 25, 30, 35, 40, and 45 °C. J. Chem. Eng. Data 28, 300–305 (1983)

    CAS  Google Scholar 

  81. Urusova, M.A., Valyashko, V.M.: Solubility, vapour pressure, and thermodynamic properties of solutions in the MgCl2–H2O system at 300–350 °C. Russ. J. Inorg. Chem. 28, 1045–1048 (1983)

    Google Scholar 

  82. Gates, J.A., Wood, R.H.: Densities of aqueous solutions of NaCl, MgCl2, KCl, NaBr, LiCl, and CaCl2 from 0.05 to 5.0 mol/kg and 0.1013 to 40 MPa at 298.15 K. J. Chem. Eng. Data 30, 44–49 (1985)

    CAS  Google Scholar 

  83. Juillard, J., Tissier, C., Barczynska, J., Mokrzan, J., Taniewska-Osinska, S.: Solute–solvent interactions in water-t-butyl alcohol mixtures. Part 14. ΔG, ΔH and ΔS of transfer for alkaline earth metal cations. J. Chem. Soc. Faraday Trans. I 81, 3081–3090 (1985)

    CAS  Google Scholar 

  84. Connaughton, L.M., Hershey, J.P., Millero, F.J.: PVT properties of concentrated aqueous electrolytes: V. Densities and apparent molal volumes of the four major sea salts from dilute solution to saturation and from 0 to 100 °C. J. Solution Chem. 15, 989–1002 (1986)

    CAS  Google Scholar 

  85. Emons, H.H., Voigt, W., Wollny, W.F.: Dampfdruckmessungen am System Magnesiumchlorid–Wasser. Z. physik. Chem. Leipzig 267, 1–8 (1986)

    CAS  Google Scholar 

  86. Fanghanel, T., Kravchuk, K., Voigt, W., Emons, H.H.: Solid–liquid phase equilibria in the system KCl–MgCl2–H2O at elevated temperatures. I. The binary system MgCl2–H2O at 130–250 °C. Z. Anorg. Allgem. Chem. 547, 21–26 (1987)

    Google Scholar 

  87. Saluja, P.P.S., LeBlanc, J.C.: Apparent molar heat capacities and volumes of aqueous solutions of MgCl2, CaCl2, and SrCl2 at elevated temperatures. J. Chem. Eng. Data 32, 72–76 (1987)

    CAS  Google Scholar 

  88. White, D.E., Gates, J.A., Tillet, D.M., Wood, R.H.: Heat capacity of aqueous CaCl2 from 306 to 603 K at 17.5 MPa. J. Chem. Eng. Data 33, 485–490 (1988)

    CAS  Google Scholar 

  89. Fanghanel, T., Grjotheim, K.: Thermodynamics of aqueous reciprocal salt systems. III. Isopiestic determination of osmotic and activity coefficients of aqueous MgCl2, MgBr2, KCl and KBr at 100.3 °C. Acta Chem. Scand. 44, 892–895 (1990)

    Google Scholar 

  90. Pepinov, R.I., Labkova, N.V., Zokhraggekova, G.Y.: Density of water solutions of magnesium-chloride and magnesium-sulfate at high-temperatures and pressures. High Temp. 30, 66–70 (1992)

    Google Scholar 

  91. Jahn, H., Wolf, G.: The enthalpy of solution of MgCl2 and MgCl2⋅6H2O in water at 25 °C. I. The integral molar enthalpy of solution. J. Solution Chem. 22, 893–994 (1993)

    Google Scholar 

  92. Saluja, P.P.S., Jobe, D.J., LeBlanc, J.C., Lemire, R.J.: Apparent molar heat capacities and volumes of mixed electrolytes: [NaCl(aq) + CaCl2(aq)], [NaCl(aq) + MgCl2(aq)], and [CaCl2(aq) + MgCl2(aq)]. J. Chem. Eng. Data 40, 398–406 (1995)

    CAS  Google Scholar 

  93. Holmes, H.F., Mesmer, R.E.: Aqueous solutions of the alkaline earth metal chlorides at elevated temperatures. Isopiestic molalities and thermodynamic properties. J. Chem. Thermodyn. 28, 1325–1358 (1996)

    CAS  Google Scholar 

  94. Obsil, M., Majer, V., Hefter, G.T., Hynek, V.: Volumes of MgCl2(aq) at temperatures from 298 K to 623 K and pressures up to 30 MPa. J. Chem. Thermodyn. 29, 575–593 (1997)

    CAS  Google Scholar 

  95. Wang, P., Oakes, C.S., Pitzer, K.S.: Thermodynamics of aqueous mixtures of magnesium chloride with sodium chloride from 298.15 to 573.15 K. New measurements of the enthalpies of mixing and of dilution. J. Chem. Eng. Data 42, 1101–1110 (1997)

    CAS  Google Scholar 

  96. Call, T.G., Ballerat-Busserolles, K., Origlia, M.L., Ford, T.D., Woolley, E.M.: Apparent molar volumes and heat capacities of aqueous magnesium chloride and cadmium chloride at temperatures from 278.15 K to 393.15 K at the pressure 0.35 MPa: A comparison of ion–ion interactions. J. Chem. Thermodyn. 32, 1525–1538 (2000)

    CAS  Google Scholar 

  97. Linke, W.F., Seidell, A.S.: Solubilities of Inorganic and Metal-Organic Compounds A-Ir, vol. 1, 4th edn. American Chemical Society, Washington (1958)

    Google Scholar 

  98. Oakes, C.S., Bodnar, R.J., Simonson, J.M.: The system NaCl–CaCl2–H2O: I. The ice liquidus at 1 atm total pressure. Geochim. Cosmochim. Acta 54, 603–610 (1990)

    ADS  CAS  Google Scholar 

  99. Zarembo, V.I., Livov, S.N., Matuzenko, M.Yu.: Saturated vapor pressure of water and activity coefficients of calcium chloride in the CaCl2–H2O system at 423–623 K. Geochem. Int. 17, 159–162 (1980)

    Google Scholar 

  100. Ketsko, V.A., Urusova, M.A., Valyashko, W.M.: Solubility and vapour pressure of solutions in the CaCl2–H2O system at 250–400 °C. Russ. J. Inorg. Chem. 29, 1398–1399 (1984)

    Google Scholar 

  101. Wood, S.A., Crerar, D.A., Brantley, S.L., Borcsik, M.: Mean molal stoichiometric activity coefficients of alkali halides and related electrolytes in hydrothermal solutions. Am. J. Sci. 284, 668–705 (1984)

    Article  CAS  Google Scholar 

  102. Ananthaswamy, J., Atkinson, G.J.: Thermodynamics of concentrated electrolyte mixtures. 5. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.25–373.15 K. J. Chem. Eng. Data 30, 120–128 (1985)

    CAS  Google Scholar 

  103. Simonson, J.M., Busey, R.H., Mesmer, R.E.: Enthalpies of dilution of aqueous calcium chloride to low molalities at high temperatures. J. Phys. Chem. 89, 557–560 (1985)

    CAS  Google Scholar 

  104. Garvin, D., Parker, V.B., White, H.J.: CODATA Thermodynamic Tables, Selections for Some Compounds of Calcium and Related Mixtures: A Prototype Set of Tables. Hemisphere Publishing, Washington (1987)

    Google Scholar 

  105. White, D.E., Doberstein, A.L., Gates, J.A., Tillet, D.M., Wood, R.H.: Heat capacity of aqueous CaCl2 from 306 to 603 K at 17.5 MPa. J. Chem. Thermodyn. 19, 251–259 (1987)

    CAS  Google Scholar 

  106. Holmes, H.F., Busey, R.H., Simonson, J.M., Mesmer, R.E.: CaCl2(aq) at elevated temperatures. Enthalpies of dilution, isopiestic molalities, and thermodynamic properties. J. Chem. Thermodyn. 26, 271–298 (1994)

    CAS  Google Scholar 

  107. Pitzer, K.S., Oakes, C.S.: Thermodynamics of calcium chloride in concentrated aqueous solutions and in crystals. J. Chem. Eng. Data 39, 553–559 (1994)

    CAS  Google Scholar 

  108. Oakes, C.S., Simonson, J.M., Bodnar, R.J.: Apparent molar volumes of aqueous calcium chloride to 250 °C, 400 bars, and from molalities of 0.242 to 6.150. J. Solution Chem. 24, 897–916 (1995)

    CAS  Google Scholar 

  109. Hoffmann, F.P., Voigt, W.: Vapor pressure of highly concentrated aqueous calcium chloride solutions (3.8–25 mol/kg) at temperatures from 373 to 523 K. Int. Elect. J. Phys Chem. Data 2, 31–36 (1996)

    CAS  Google Scholar 

  110. Rard, J.A., Clegg, S.L.: Critical evaluation of the thermodynamic properties of aqueous calcium chloride. 1. Osmotic and activity coefficients of 0–10.77 mol⋅kg−1 aqueous calcium chloride solutions at 298.15 K and correlation with extended Pitzer ion-interaction models. J. Chem. Eng. Data 42, 819–849 (1997)

    CAS  Google Scholar 

  111. Oakes, C.S., Pitzer, K.S., Sterner, S.M.: The system NaCl–CaCl2–H2O: Part 3. Heats of dilution and mixing at 373 to 573 K and 21.5 MPa using a new high temperature, flow-through calorimeter. Geochim. Cosmochim. Acta 62, 1133–1146 (1998)

    ADS  CAS  Google Scholar 

  112. Guendouzi, M.E., Marouani, M.: Water activities and osmotic and activity coefficients of aqueous solutions of nitrates at 25 °C by the hygrometric method. J. Solution Chem. 32, 535–546 (2003)

    Google Scholar 

  113. Bezboruah, C.P., Covington, A.K., Robinson, R.A.: Excess Gibbs energies of aqueous mixtures of alkali metal chlorides and nitrates. J. Chem. Thermodyn. 2, 431–437 (1970)

    CAS  Google Scholar 

  114. Kirgintsev, A.N., Lukyanov, A.V.: Issledovanie troinykh rastvorov izopesticheskim metodom. III. Troinye rastvory NaCl–NaNO3–H2O, NaCl–NaBr–H2O, NH4Cl–NH4Br–H2O. Russ. J. Phys. Chem. 39, 653–655 (1965)

    Google Scholar 

  115. Lincoln, A.T., Klein, D.: The vapor pressure of aqueous nitrate solutions. J. Phys. Chem. 11, 318–348 (1907)

    CAS  Google Scholar 

  116. Robinson, R.A.: The activity coefficients of alkali nitrates, acetates and p-toluenesulfonates in aqueous solution from vapor pressure measurements. J. Am. Chem. Soc. 57, 1165–1168 (1935)

    CAS  Google Scholar 

  117. Kangro, W., Groeneveld, A.: Concentrated aqueous solutions. I. Z. physik. Chem. N.F. 32, 110–126 (1962)

    CAS  Google Scholar 

  118. Shpigel, L.P., Mishchenko, K.P.: Activities and rational activity coefficients of water in potassium nitrate and sodium nitrate solutions at 1, 25, 50, and 75 °C over a wide concentration range. Russ. J. Appl. Chem. 40, 659–661 (1967)

    Google Scholar 

  119. Puchkove, L.V., Matveeva, R.P., Baranova, T.L.: Specific heats of aqueous solutions of sodium and potassium nitrates at temperatures in the range 25–340 °C. Russ. J. Appl. Chem. 46, 460–462 (1973)

    Google Scholar 

  120. Egorov, V.Ya., Zarembo, V.I., Soboleva, N.G., Puchkov, L.V.: Activity of water and activity coefficients of dissolved electrolytes in aqueous solutions of alkali metal nitrates at temperatures of 423–623 K. Russ. J. Appl. Chem. 54, 1031–1034 (1981)

    Google Scholar 

  121. Azizov, N.D., Akhundov, T.S.: Experimental study of solvent vapor pressure and calculation of thermodynamic properties for NaNO3–H2O and KNO3–H2O mixtures. Russ. J. Inorg. Chem. 43, 1600–1603 (1998)

    Google Scholar 

  122. Kirgintsev, A.N., Lukyanov, A.V.: Isopiestic investigation of ternary solutions. V. Ternary NaNO3–Ca(NO3)2–H2O, NaNO3–La(NO3)3–H2O, NaNO3–Th(NO3)4–H2O, NaCl–CaCl2–H2O, NaCl–LaCl3–H2O and NaCl–ThCl4–H2O solutions at 25 °C. Russ. J. Phys. Chem. 39, 389–391 (1965)

    Google Scholar 

  123. Kirgintsev, A.N., Lukyanov, A.V.: Issledovanie troinykh rastvorov izopesticheskim metodom. III. Troinye rastvory NaCl–NaNO3–H2O, NaCl–NaBr–H2O, NH4Cl–NH4Br–H2O. Russ. J. Phys. Chem. 38, 867–869 (1964)

    Google Scholar 

  124. Berkeley, E.: On some physical constants of saturated solutions. Philos. Trans. Roy. Soc. London 203, 189–215 (1904)

    ADS  Google Scholar 

  125. Chretian, A.: Etude du systeme quaternaire eau, nitrate de sodium, chlorure de sodium, sulfate de sodium. Annal. Chim. Paris 12, 9–155 (1929)

    Google Scholar 

  126. Kracek, F.C.: Gradual transition in sodium nitrate. I. Physicochemical criteria of the transition. J. Am. Chem. Soc. 53, 2609–2624 (1931)

    CAS  Google Scholar 

  127. Pearce, J.N., Hopson, H.: The vapor pressures of aqueous solutions of sodium nitrate and potassium. Thiocyanate. J. Phys. Chem. 41, 535–538 (1937)

    CAS  Google Scholar 

  128. Puchkov, L.V., Matashkin, V.G.: Densities of LiNO3–H2O and NaNO3–H2O solutions at temperatures in the range 25–300 °C. Russ. J. Appl. Chem. 43, 1864–1867 (1970)

    Google Scholar 

  129. Greyson, J., Snell, H.: Heat of transfer between heavy and normal water for some inorganic acid salts. J. Chem. Eng. Data 16, 73–74 (1971)

    CAS  Google Scholar 

  130. Shenkin, Ya.S., Ruchnova, S.A., Rodionova, N.A.: Solubility isobars for the sodium nitrite–sodium nitrate–water system. Russ. J. Inorg. Chem. 18, 123–124 (1973)

    Google Scholar 

  131. Natarajan, T.S., Srinivasan, D.: Effect of sodium nitrate on the vapor–liquid equilibria of the methanol–water system. J. Chem. Eng. Data 25, 281–221 (1980)

    Google Scholar 

  132. Wu, Y.C., Hamer, W.J.: Comments: revised values of the osmotic coefficients and mean activity coefficients of sodium nitrate in water at 25 °C. J. Phys. Chem. Ref. Data 9, 513–518 (1980)

    Article  ADS  CAS  Google Scholar 

  133. Voigt, W., Dittrich, A., Haugsdal, B., Grjotheim, K.: Thermodynamics of aqueous reciprocal salt systems. II. Isopiestic determination of the osmotic and activity coefficients in LiNO3–NaBr–H2O and LiBr–NaNO3–H2O at 100.3 °C. Acta Chem. Scand. 44, 12–17 (1990)

    Article  CAS  Google Scholar 

  134. Apelblat, A.: The vapour pressures of saturated aqueous lithium chloride, sodium bromide, sodium nitrate, ammonium nitrate, and ammonium chloride at temperatures from 283 K to 313 K. J. Chem. Thermodyn. 25, 63–71 (1993)

    CAS  Google Scholar 

  135. Bozmann, E., Richter, J., Stark, A.: Experimental results and aspects of analytical treatment of vapour pressure measurements in hydrated melts at elevated temperatures. Ber. Bunsenges. Phys. Chem. 97, 240–245 (1993)

    Google Scholar 

  136. Tang, I.N., Munkelwitz, H.R.: Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res. 99, 18801–18808 (1994)

    ADS  Google Scholar 

  137. Pena, M.P., Vercher, E., Martinez-Andreu, A.J.: Vapor–liquid equilibrium for ethanol + water + sodium nitrate. J. Chem. Eng. Data 41, 1097–1100 (1996)

    CAS  Google Scholar 

  138. Archer, D.G.: Thermodynamic properties of the NaNO3 + H2O system. J. Phys. Chem. Ref. Data 29, 1141–1156 (2000)

    ADS  CAS  MathSciNet  Google Scholar 

  139. Carter, R.W., Archer, D.G.: Heat capacity of NaNO3(aq) in stable and supercooled states. Ion association in the supercooled solution. Phys. Chem. Chem. Phys. 2, 5138–5145 (2000)

    CAS  Google Scholar 

  140. Guendouzi, M.E., Dinane, A.J.: Determination of water activities, osmotic and activity coefficients in aqueous solutions using the hygrometric method. J. Chem. Thermodyn. 32, 297–310 (2000)

    CAS  Google Scholar 

  141. Apelblat, A., Korin, E.: Vapor pressures of saturated aqueous solutions of ammonium iodide, potassium iodide, potassium nitrate, strontium chloride, lithium sulphate, sodium thiosulphate, magnesium nitrate, and uranyl nitrate from T=(278 to 323) K. J. Chem. Thermodyn. 30, 459–471 (1998)

    CAS  Google Scholar 

  142. Rodnyanskii, I.M., Korobkov, V.I., Galinker, I.S.: Specific volumes of aqueous electrolyte solutions at high temperatures. Russ. J. Phys. Chem. 36, 1192–1194 (1962)

    Google Scholar 

  143. Amdur, S.M., Padova, J.I., Schwarz, A.M.: Isopiestic study of the system potassium chloride–potassium nitrate–water at 25 °C. J. Chem. Eng. Data 15, 417–418 (1970)

    CAS  Google Scholar 

  144. Fanghanel, T., Grjotheim, K., Voigt, W., Brendler, V.: Thermodynamics of aqueous reciprocal salt systems. VI. Isopiestic determination of osmotic coefficients in mixtures of chlorides, bromides and nitrates of lithium, sodium, potassium and cesium at 100.3 °C. Acta Chem. Scand. 46, 423–431 (1992)

    Google Scholar 

  145. Parker, V.B.: Thermal properties of aqueous uni-univalent electrolytes. National Standard Ref. Data Series National Bureau of Standards, vol. 2 (1965)

  146. Hamer, W.J., Wu, Y.-C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1099 (1972)

    Article  CAS  Google Scholar 

  147. Petrov, G.I., Puchkov, L.V.: Adiabatic calorimeter for measuring specific heats of liquids in the temperature range from 0 to 100 °C. Russ. J. Appl. Chem. 46, 2373–2375 (1973)

    Google Scholar 

  148. Simonson, J.M., Pitzer, K.S.: Thermodynamics of multicomponent, miscible, ionic systems: The system LiNO3–KNO3–H2O. J. Phys. Chem. 90, 3009–3013 (1986)

    CAS  Google Scholar 

  149. Barry, J.C., Richter, J., Stich, E.: Vapor pressures and ionic activity coefficients in the system KNO3 + H2O from dilute solutions to fused salts at 425 K, 452 K, and 492 K. Ber. Bunsenges. Phys. Chem. 92, 1118–1122 (1988)

    CAS  Google Scholar 

  150. Vercher, E., Pena, M.P., Martinez-Andreu, A.: Isobaric vapor–liquid equilibrium for ethanol + water + potassium nitrate. J. Chem. Eng. Data 41, 66–69 (1996)

    CAS  Google Scholar 

  151. Ewing, W.W., Klinger, E., Brandner, J.D.: Studies on the vapor pressure–temperature relations and on the heats of hydration, solution and dilution of the binary system magnesium nitrate–water. J. Am. Chem. Soc. 56, 1053–1057 (1934)

    CAS  Google Scholar 

  152. Robinson, R.A., Wilson, J.M., Ayling, H.S.: The activity coefficients of some bivalent metal nitrates in aqueous solution at 25 °C from isopiestic vapor pressure measurements. J. Am. Chem. Soc. 64, 1469–1471 (1942)

    CAS  Google Scholar 

  153. Forsythe, W.E.: Smithsonian Phys. Tables, 9th edn., pp. 373–374. Smithsonian Institution Press, Washington (1954)

    Google Scholar 

  154. Jain, S.K.: Volumetric properties of some single molten hydrated salts. J. Chem. Eng. Data 22, 383–385 (1977)

    CAS  Google Scholar 

  155. Sadowska, T., Libuś, W.: Thermodynamic properties and solution equilibria of aqueous bivalent transition metal nitrates and magnesium nitrate. J. Solution Chem. 11, 457–468 (1982)

    CAS  Google Scholar 

  156. Jubin, R.T., Marley, J.L., Counce, R.M.: Density study of Mg(NO3)2–H2O–HNO3 solutions at different temperatures. J. Chem. Eng. Data 31, 86–88 (1986)

    CAS  Google Scholar 

  157. Akhundov, T.S., Akhmedova, I.N., Iskenderov, A.I.: Thermal properties of aqueous solutions of magnesium nitrate in a wide range of pressures and temperatures. Izv. Vyss. Ucheb. Zaved. Neft. Gaz. 12, 66–69 (1989)

    Google Scholar 

  158. Apelblat, A.: The vapor pressures of water over saturated aqueous solutions of barium chloride, magnesium nitrate, calcium nitrate, potassium carbonate, and zinc sulfate, at temperatures from 283 K to 313 K. J. Chem. Thermodyn. 24, 619–626 (1992)

    Article  CAS  Google Scholar 

  159. Todorovic, M., Ninkovic, R.: Osmotic and activity coefficients of {xMg(NO3)2+(1−x)MgSO4}(aq) at the temperature 298.15 K. J. Chem. Thermodyn. 27, 369–375 (1995)

    CAS  Google Scholar 

  160. Todorovic, M., Ninkovic, R., Miladinovic, J.: Osmotic and activity coefficients of {yK2SO4+(1−y)Mg(NO3)2}(aq) at the temperature 298.15 K. J. Chem. Thermodyn. 30, 847–853 (1998)

    Google Scholar 

  161. Ewing, W.W.: Calcium nitrate. II. The vapor pressure–temperature relations of the binary system calcium nitrate–water. J. Am. Chem. Soc. 49, 1963–1973 (1927)

    CAS  Google Scholar 

  162. Robinson, R.A.: The activity coefficient of calcium nitrate in aqueous solution at 25 °C from isopiestic vapor pressure measurements. J. Am. Chem. Soc. 62, 3130–3131 (1940)

    CAS  Google Scholar 

  163. Stokes, R.H., Robinson, R.A.: Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70, 1870–1878 (1948)

    CAS  Google Scholar 

  164. Oakes, C.S., Felmy, A.R., Sterner, S.M.: Thermodynamic properties of aqueous calcium nitrate {Ca(NO3)2} to the temperature 373 K including new enthalpy of dilution. Data J. Chem. Thermodyn. 32, 29–54 (2000)

    CAS  Google Scholar 

  165. Pelsha, A.D.: Handbook of Experimental Data for Salt Solubilities, Ternary Systems, vol. 1. Khimia, Leningrad (1973)

    Google Scholar 

  166. Clynne, M.A., Potter II, R.W., Haas Jr., J.L.: Solubility of NaCl in aqueous electrolyte solutions from 10 to 100 °C. J. Chem. Eng. Data 26, 396–398 (1981)

    CAS  Google Scholar 

  167. Robinson, R.A., Bower, V.E.: An additivity rule for the vapor pressure lowering of aqueous solutions. J. Res. Nat. Bur. Stand. A 69, 365–367 (1965)

    CAS  Google Scholar 

  168. Assarsson, G.O.: Equilibria in aqueous systems containing K+, Na+, Ca++, Mg++ and Cl. II. The quaternary system CaCl2–KCl–NaCl–H2O. J. Am. Chem. Soc. 72, 1437–1441 (1950)

    CAS  Google Scholar 

  169. Shiah, I.M., Tseng, H.C.: Experimental and theoretical determination of vapor pressures of NaCl–KCl, NaBr–KBr and NaCl–CaCl2 aqueous solutions at 298 to 343 K. Fluid Phase Equilib. 124, 235–249 (1996)

    CAS  Google Scholar 

  170. Holluta, J., Mautner, S.: Investigations of the solubility influence of strong electrolytes. I. The mutual solubility effect of alkali salts having a common ion. I. Z. physik. Chem. 127, 455–475 (1927)

    CAS  Google Scholar 

  171. Blasdale, W.C.: Equilibria in solutions containing mixtures of salts III. The system, water and the chlorides and carbonates of sodium and potassium at 25 °C. IV. The system, water and the sulfates and carbonates of sodium and potassium at 25 °C. J. Am. Chem. Soc. 45, 2935–2946 (1923)

    CAS  Google Scholar 

  172. Teeple, J.E.: The Industrial Development of Searles Lake Brines. Chem. Catalogue Company, New York (1929)

    Google Scholar 

  173. Cornec, E., Krombach, H.: Equilibria between water, potassium chloride and sodium chloride between −23° and +190°. Ann. Chim. Appl. 18, 5–31 (1932)

    CAS  Google Scholar 

  174. Cornec, E., Krombach, H.: Equilibria between water, potassium chloride and sodium chloride between −23° and +190°. Compt. Rend. 194, 714–716 (1932)

    CAS  Google Scholar 

  175. Erdos, E.: Solubility of electrolytes. I. Presentation and correlation of solubility data in multicomponent systems. Chem. Listy Vedu Prum. 51, 1632–1640 (1957)

    CAS  Google Scholar 

  176. Brunisholz, G., Bodmer, M.: The system H+–Na+–K+–Cl–PO 3−4 –H2O. I. General observations and the ternary systems NaCl–KCl–H2O, KCl–KH2PO4–H2O, NaCl–NaH2PO4–H2O, and NaH2PO4–KH2PO4–H2O. Helv. Chim. Acta 46, 2566–2574 (1963)

    CAS  Google Scholar 

  177. Holmes, H.F., Baes Jr., C.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures II. NaCl + KCl mixtures. J. Chem. Thermodyn. 11, 1035–1050 (1979)

    CAS  Google Scholar 

  178. Sterner, S.M., Hall, D.L., Bodnar, R.J.: Synthetic fluid inclusions: V. Solubility relations in the system NaCl–KCl–H2O under vapor–saturated conditions. Geochim. Cosmochim. Acta 52, 989–1005 (1988)

    ADS  CAS  Google Scholar 

  179. Flesia, M.A., DeChialvo, M.R.G., Chialvo, A.C.: Isopiestic determination of osmotic coefficients and evaluation of activity coefficients of aqueous mixtures of sodium and potassium chloride at 45 °C. Fluid Phase Equilib. 131, 189–196 (1997)

    CAS  Google Scholar 

  180. Keitel, H.: Rate of dissolution and displacement of sylvine and rock salt from natural sylvinite and “hard salt”. Mitteil. Kali-Forschungs-Anstalt, 95–127 (1922)

  181. Akhumov, E.I., Vasiliev, B.B.: Izvestiia Sektora Fiz. Khim. Analiza Inst. Obsh. Neorgan. Khim. Akad. Nauk SSSR 9, 308 (1936), cited in: Ref. [294], p. 108

    Google Scholar 

  182. d’Ans, J., Sypiena, G.: Solubilities in the system KCl–MgCl2–H2O and NaCl–MgCl2–H2O at temperatures up to about 200°. Kali 36, 89–95 (1942)

    CAS  Google Scholar 

  183. Majima, K., Tejima, M., Oka, S.: Natural gas brine. IV. Phase equilibriums in ternary systems MgCl2–CaCl2–H2O and NaCl–MgCl2–H2O and a quaternary system NaCl–MgCl2–CaCl2–H2O at 50°. Nippon Kaisui Gakkaishi 23, 113–117 (1969)

    CAS  Google Scholar 

  184. Sieverts, A., Muller, E.L.: Das reziproke Salzpaar MgCl2, Na2(NO3)2, H2O. II. Z. Anorg. Allgem. Chem. 200, 305–320 (1931)

    CAS  Google Scholar 

  185. Meyer, T.A., Prutton, C.F., Lightfoot, W.J.: Equilibria in saturated solutions. V. The quinary system CaCl2–MgCl2–KCl–NaCl–H2O at 35 °C. J. Am. Chem. Soc. 71, 1236–1237 (1949)

    CAS  Google Scholar 

  186. Leimbach, G.: Beitrag zur Kenntnis der ozeanischen Salzablagerungen. Kali 1, 8–13 (1926)

    Google Scholar 

  187. van’t Hoff, J.H.: Zur Bildung der ozeanischen Salzablagerungen. Z. Anorg. Chem. 47, 244–280 (1905)

    Google Scholar 

  188. van’t Hoff, J.H., Dawson, H.M.: Schmelzpunktserniedrigung des Magnesiumchlorids durch Zusatz von Fremdkörpern. Z. Physik. Chem. 22, 598–608 (1897)

    Google Scholar 

  189. van’t Hoff, J.H., Sachs, H., Biach, O.: Untersuchungen über die Bildungsverhältnisse der ozeanischen Salzablagerungen. XXXV. Die Zusammensetzung der konstanten Lösungen bei 83°. Sitz. Konig. Preuss. Ak., 576–586 (1904)

  190. d’Ans, J.: Researches on the salt systems of oceanic salt deposits. Kali 9, 148–154 (1915)

    CAS  Google Scholar 

  191. Maeda, T.: Salt manufacturing processes. J. Chem. Ind. Japan 23, 1129–1146 (1920)

    CAS  Google Scholar 

  192. Takegami, S.: Reciprocal salt pairs: Na2Cl2 + MgSO4→Na2SO4 + MgCl2 at 25°. Memoirs Coll. Sci. Kyoto Imp. University 4, 317–342 (1921)

    CAS  Google Scholar 

  193. Keitel, H., Gerlach: The systems KCl–MgCl2–H2O and NaCl–MgCl2–H2O. Kali 17, 248–251, 261–265 (1923)

  194. Kurnakow, N.S., Zemcuzny, S.F.: Die Gleichgewichte des reziproken Systems Natriumchlorid–Magnesiumsulfat mit Berücksichtigung der naturlichen Salzsolen. Z. Anorg. Allgem. Chem. 140, 149–182 (1924)

    Google Scholar 

  195. Leimbach, G., Pfeiffenberger, A.: Quaternary system: sodium nitrate–sodium sulfate–magnesium chloride–water from 0°to 100°. Caliche 11, 61–85 (1929)

    CAS  Google Scholar 

  196. Bergman, A.G., Koloskaova, Z.A., Dombrovskaya, N.S.: Za nedra Volgo Prikaspiya 2, 312–313 (1937), cited in: Ref. [165], p. 290

    Google Scholar 

  197. Klementiev, V.: Tr. Vses. Alyumin. Magniev. Inst. 14, 5–12 (1937), cited in: Ref. [165] p. 290

    Google Scholar 

  198. Nikolaev, V.I., Burovaya, E.E.: Surface tension and viscosity in the reciprocal system sodium chloride–magnesium sulfate. Ann. Sect. Anal. Phys.-Chim., Inst. Chim. Gen. (U.S.S.R.) 10, 245–258 (1938)

    CAS  Google Scholar 

  199. Rode, T.V.: Vapor pressure and solubility of the aqueous reversible system 2NaCl + MgSO4→Na2SO4 + MgCl2. Izvest. Sektora Fiz.-Khim. Anal., Inst. Obsh. Neorg. Khim., Akad. Nauk S.S.S.R. 15, 234–265 (1947)

    CAS  Google Scholar 

  200. Reza-Zade, P.F., Rustamov, P.G.: Solubility isotherm of the system NaCl–MgCl2–CoSO4–H2O at 25°. Azerb. Khim. Zhur. (No. 6), 119–125 (1960)

  201. Ryspaev, O., Batyrchaev, I.G., Druzhinin, I.G.: Study of the quinary reciprocal system Na+, Mg++, Ca++ || Cl, SO 2−4 –H2O at 75 °C. Russ. J. Appl. Chem. 48, 2029–2031 (1975)

    Google Scholar 

  202. Susarla, V.R.K.S., Sanghavi, J.R.: Study of the aqueous system Ca++, Na+, Mg++/Cl, SO 2−4 at 35 °C. Seventh Symp. Salt 1, 539–543 (1993)

    Google Scholar 

  203. Dinane, A., Mounir, A.: Water activities osmotic and activity coefficients in aqueous mixtures of sodium and magnesium chlorides at 298.15 K by the hygrometric method. Fluid Phase Equilib. 206, 13–25 (2003)

    CAS  Google Scholar 

  204. Igelsrud, I., Thompson, T.G.: Equilibria in the saturated solutions of salts occurring in sea water. II. The quaternary system MgCl2–CaCl2–KCl–H2O at 0 °C. J. Am. Chem. Soc. 58, 318–322 (1936)

    CAS  Google Scholar 

  205. Assarsson, G.: The winning of salt from the brines in southern Sweden. Sveriges Geol. Undersökn. Ser. C No. 501, Årsbok 42, 1–15 (1948)

    Google Scholar 

  206. Pelling, A.J., Robertson, J.B.: The reciprocal salt-pair: 2NaCl + Ca(NO3)2→2NaNO3+CaCl2. South Afr. J. Sci. 20, 236–240 (1923)

    CAS  Google Scholar 

  207. Lukyanova, E.I., Shoikhet, D.N.: Trudy Gos. Inst. Prikl. Khim. 34, 10–16 (1940), cited in: Ref. [294], p. 121

    Google Scholar 

  208. van Mills, R., Wells, R.C.: Evaporation and concentration of water associated with petroleum and natural gas. Bull. US Geol. Surv. 693, 1–100 (1919)

    Google Scholar 

  209. Pelling, J., Robertson, J.: Chem. J. Met. Min. Soc. South Afr., 196 (1926), cited in: Ref. [165], p. 301

  210. Koroleve, V.F.: Trudy Solyanoi Laboratory Akademii Nauk SSSR 15, 38 (1937), cited in: Ref. [165], p. 303

    Google Scholar 

  211. Gromova, E.T.: The solubility isotherm of the Na, Ca || Cl, SO4–H2O system at 110 °C. Russ. J. Inorg. Chem. 5, 1244–1247 (1960)

    Google Scholar 

  212. Robinson, R.A., Bower, V.E.: Properties of aqueous mixtures of pure salts. Thermodynamics of the ternary system: water–calcium chloride–magnesium chloride at 25 °C. J. Res. Nat. Bur. Stand. A 70, 313–318 (1966)

    CAS  Google Scholar 

  213. Mel’nikova, Z.M., Moshkina, I.A.: The solubility of anhydrite and gypsum in the system Na, Mg, Ca || Cl, SO4–H2O at 25 °C. Izv. Akad. Nauk SSSR 4, 17–25 (1973)

    Google Scholar 

  214. Holmes, H.F., Baes Jr., C.F., Mesmer, R.E.: Studies of aqueous solutions at elevated temperatures. III. {(1−y)NaCl+(y)CaCl2}. J. Chem. Thermodyn. 13, 101–113 (1981)

    CAS  Google Scholar 

  215. Brantley, S.L.: Chapter Two—Activity Coefficients of NaCl–CaCl2 Aqueous Solutions with Application to High Temperature Natural Brines, PhD Thesis, Princeton, pp. 39–62 (1987)

  216. Vanko, D.A., Bodnar, R.J., Sterner, S.M.: Synthetic fluid inclusions: VIII. Vapor-saturated halite solubility in part of the system NaCl–CaCl2–H2O, with application to fluid inclusions from oceanic hydrothermal systems. Geochim. Cosmochim. Acta 52, 2451–2456 (1988)

    ADS  CAS  Google Scholar 

  217. Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated solutions I. The ternary systems CaCl2–MgCl2–H2O, CaCl2–KCl–H2O, and MgCl2–KCl–H2O at 35 °C. J. Am. Chem. Soc. 68, 1001–1002 (1946)

    CAS  Google Scholar 

  218. Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated salt solutions. II. The ternary systems CaCl2–MgCl2–H2O, CaCl2–KCl–H2O, and MgCl2–KCl–H2O at 75 °C. J. Am. Chem. Soc. 69, 2098–2100 (1947)

    CAS  Google Scholar 

  219. Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated solutions. III. The quaternary system CaCl2–MgCl2–KCl–H2O at 35 °C. J. Am. Chem. Soc. 70, 4112–4115 (1948)

    CAS  Google Scholar 

  220. Lightfoot, W.J., Prutton, C.F.: Equilibria in saturated salt solutions. IV. The quaternary system CaCl2–MgCl2–KCl–H2O at 75 °C. J. Am. Chem. Soc. 71, 1233–1235 (1949)

    CAS  Google Scholar 

  221. Precht, H., Wittjen, B.: Löslichkeit von Salzgemischen der Salze der Alkalien und alkalischen Erden bei verschiedener Temperatur. Berichte der Deutschen Chemischen Gesellschaft 14, 1667–1675 (1881)

    Google Scholar 

  222. Khaidukov, N.I., Linetzkaya, Z.G.: The water-vapor pressure above the solutions NaCl–KCl–MgCl2–H2O. Kali 8, 28–33 (1935)

    Google Scholar 

  223. Kistiakovsky, W.: Die wässerigen Lösungen von Doppelsalzen. Z. Physik. Chem. 6, 97–121 (1890)

    Google Scholar 

  224. Feit, W., Kubierschky, K.: Die Gewinnung von Rubidium- und Caesiumverbindungen aus Carnallit. Chemiker Zeitung 16, 335–340 (1892)

    Google Scholar 

  225. Van’t Hoff, J.H., Meyerhoffer, W.: Ueber Anwendungen der Gleichgewichtslehre auf die oceanischen Salzablagerungen mit besonderer Berücksichtigung des Stassfurter Salzlagers. Z. Physik. Chem. 30, 64–88 (1899)

    CAS  Google Scholar 

  226. Uhlig, J.: The solubility diagram of potassium chloride, magnesium chloride and water at 50°. Centr. Min. Geol., 417–422 (1913)

  227. Keitel, H.: The systems KCl–MgCl2–H2O and NaCl–MgCl2–H2O. Kali 17, 248–251, 261–265 (1923)

  228. Campbell, A.N., Downs, K.W., Samis, C.S.: The system MgCl2–KCl–MgSO4–K2SO4–H2O at 100 °C. J. Am. Chem. Soc. 56, 2507–2512 (1934)

    CAS  Google Scholar 

  229. Lepeshkov, I.N., Bodaleva, N.V.: Solubility isotherm of the aqueous reciprocal system K2Cl2 + MgSO4→K2SO4 + MgCl2 at 25°. Izvest. Sekt. Fiz.-Khim. Anal., Inst. Obsh. Neorg. Khim., Akad. Nauk S.S.S.R. 17, 338–344 (1949)

    CAS  Google Scholar 

  230. Patel, K.P., Seshadri, K.: Phase rule study of quaternary system potassium chloride–aluminum chloride–magnesium chloride–water at 25°. Ind. J. Chem. 6, 379–381 (1968)

    CAS  Google Scholar 

  231. Lee, W.B., Egerton, A.C.: Heterogeneous equilibria between the chlorides of calcium, magnesium, potassium, and their aqueous solutions. Part I. J. Chem. Soc. 123, 706–716 (1923)

    CAS  Google Scholar 

  232. Barbaudy, J.: The equilibrium: water-potassium chloride–potassium nitrate–calcium nitrate–calcium chloride. Rec. Trav. Chim. Pays-Bas Belg. 42, 638–642 (1923)

    CAS  Google Scholar 

  233. Selivanova, A.S.: Tr. Mosk. Inst. Tonkoi Khim. Tekhnol. 3, 23 (1952), cited in: Ref. [305], p. 1125

    Google Scholar 

  234. Zaslavskii, A.I.: Physicochemical conditions of the crystallization of potassium chlorate at 0° and −10°. Trans. State Inst. Appl. Chem. (U.S.S.R.) No. 23, 67–84 (1935)

  235. Assarsson, G.O.: Equilibria in aqueous systems containing K+, Na+, Ca++, Mg++ and Cl. I. The ternary system CaCl2–KCl–H2O. J. Am. Chem. Soc. 72, 1433–1436 (1950)

    CAS  Google Scholar 

  236. Vlasov, N.A., Ogienko, S.V.: Solubility polytherms of the system CaCl2–KCl–H2O from the temperature of complete freezing to +40°. Izv. Fiz.-Khim. Nauchn.-Issled. Inst. Pri Irkutskom Univ. 4, 62–80 (1959)

    CAS  Google Scholar 

  237. Kolesnikov, M.M., Beskov, S.D., Druzhinin, I.G.: Uchenyie Zapiski 193, 47 (1968), cited in: Ref. [165], p. 675

    Google Scholar 

  238. Soloveva, E.F.: The 50° isotherm of the aqueous salt system Na+, K+, Mg2+, Ca2+//Cl–H2O. Tr. Vses. Nauch.-Issled. Inst. Geologii No. 52, 58–74 (1967)

  239. Kurnakov, N.S., Nikolaev, A.V.: Izv. Akad. Nauk SSSR Ser. Khim. 2, 403–313 (1938)

    Google Scholar 

  240. Smith, A., Prutton, C.: Patent 1768797, U.S.A. (1923)

  241. Smith, A., Prutton, C.: Patent 1780098, U.S.A. (1923)

  242. Bury, C.R., Davies, E.R.H.: The system magnesium chloride–lime–water. J. Chem. Soc., 701–705 (1933)

  243. Yanatieva, O.K.: Polytherms of solubility of salts in the tropic systems CaCl2–MgCl2–H2O and CaCl2–NaCl–H2O. Russ. J. Appl. Chem. 19, 709–722 (1946)

    Google Scholar 

  244. Assarsson, G.O.: Equilibria in aqueous systems containing K+, Na+, Ca2+, Mg2+, and Cl. III. The ternary system CaCl2–MgCl2–H2O. J. Am. Chem. Soc. 72, 1442–1444 (1950)

    CAS  Google Scholar 

  245. Perova, A.P.: Mutual solubility of the ternary system CaCl2–MgCl2–H2O at 55°. Soobsh. Nauch. Rabot Vsesoyuz. Khim. Obsh. im. D.I. Mendeleeva (No. 2), 46–48 (1955)

  246. Uyeda, K.: On the equilibrium of the reciprocal salt pair: ClK+NO3K+ClNa. Memoirs Coll. Sci. Eng. Kyoto Imp. University 2, 245–261 (1910)

    CAS  Google Scholar 

  247. Leather, J.W., Mukerji, J.N.: The system potassium nitrate, sodium chloride, water. Mem. Dept. Agr. India, Chem. Ser. 3, 177–204 (1913)

    Google Scholar 

  248. Nichol, W.W.J.: On the mutual solubility of salts in water. Part I. Philos. Mag. J. Sci. 31, 369–385 (1891)

    Google Scholar 

  249. Benrath, A.Z.: Über die Löslichkeit von Salzen und Salzgemischen bei Temperaturen oberhalb von 100 °C. Z. Anorg. Chem. 252, 86–94 (1943)

    CAS  Google Scholar 

  250. Cornec, E., Krombach, H.: The study of equilibria between water the nitrates, chlorides and sulfates of sodium and potassium. Ann. Chim. Appl. 12, 203–295 (1929)

    CAS  Google Scholar 

  251. Carnelley, T., Thomson, A.: The solubility of isomeric organic compounds and of mixtures of sodium and potassium nitrates, and the relation of solubility to fusibility. J. Chem. Soc. 53, 782–802 (1888)

    CAS  Google Scholar 

  252. Kremann, R., Zitek, A.: Die Bildung von Konversionssalpeter aus Natronsalpeter und Pottasche vom Standpunkt der Phasenlehre. Monatsh. Chem. 30, 311–340 (1909)

    CAS  Google Scholar 

  253. Madgin, W.M., Briscoe, H.V.A.: The melting-point (solidus) curve for mixtures of potassium nitrate and sodium nitrate. J. Chem. Soc. 123, 2914–2916 (1923)

    CAS  Google Scholar 

  254. Hamid, M.A.: Heterogeneous equilibria between the sulphates and nitrates of sodium and potassium and their aqueous solution. Part I. The ternary systems. J. Chem. Soc., 199–205 (1926)

  255. Nikolaev, V.I.: Partition of nitric acid between sodium and potassium hydroxide. J. Russ. Phys. Chem. Soc. 60, 893–904 (1928)

    CAS  Google Scholar 

  256. Ravich, M.I., Ginzburg, F.B.: State diagram of the ternary system KNO3–NaNO3–H2O. Bull. Acad. Sci. U.R.S.S. Classe Sci. Chim. (No. 2), 141–151 (1947)

  257. Karnaukhov, A.S., Uch. Zap. Yaroslav. Gos. Pedagog. Inst. 31, 255 (1956), cited in: Ref. [305], p. 768

    Google Scholar 

  258. Jackman, D.N., Browne, A.: The 25 °C-isotherms of the systems magnesium nitrate–sodium nitrate–water and magnesium sulphate–magnesium nitrate–water. J. Chem. Soc. 121, 694–697 (1922)

    CAS  Google Scholar 

  259. Benrath, A.: Study of MgSO4–NaNO3–H2O. I. Caliche 11, 99–126 (1929)

    CAS  Google Scholar 

  260. Schroder, W.: Über das reziproke Salzpaar MgSO4–Na2(NO3)2–H2O. V. Z. Anorg. Allgem. Chem. 185, 153–166 (1929)

    CAS  Google Scholar 

  261. Schroder, W.: Über das reziproke Salzpaar MgSO4–Na2(NO3)2–H2O. VI. Z. Anorg. Allgem. Chem. 185, 267–279 (1929)

    Google Scholar 

  262. Sieverts, A., Muller, H.: The reciprocal salt pair MgCl2, Na2(NO3)2, H2O. I. Z. Anorg. Allgem. Chem. 189, 241–57 (1930)

    CAS  Google Scholar 

  263. Hamid, M.A., Das, R.: The system: water–potassium nitrate–calcium nitrate. J. Indian Chem. Soc. 7, 881–882 (1930)

    CAS  Google Scholar 

  264. Frowein, F.: Das System K2/Ca/Na2/(NO3)2/H2O. Z. Anorg. Allgem. Chem. 169, 336–344 (1928)

    CAS  Google Scholar 

  265. Kremann, R., Rodemund, H.: Über das Auftreten eines Tripelsalzes aus wässerigen Lösungen ohne gleichzeitiger Bildung eines binären Doppelsalzes. Z. Anorg. Chem. 86, 373–379 (1914)

    CAS  Google Scholar 

  266. Benrath, A., Sichelschmidt, A.: Das reziproke Salzpaar MgSO4+K2(NO3)2→Mg(NO3)2+K2SO4. III. Z. Anorg. Allgem. Chem. 197, 113–128 (1931)

    CAS  Google Scholar 

  267. Bergman, A.G., Opredelenkova, L.V.: Solubility polytherms of the calcium nitrate–potassium nitrate–water and calcium nitrate–potassium chloride–water ternary systems. Russ. J. Inorg. Chem. 14, 1144–1146 (1969)

    Google Scholar 

  268. Hamid, M.A., Das, R.: The system: water–potassium nitrate–calcium nitrate. J. Indian Chem. Soc. 7, 881–882 (1930)

    CAS  Google Scholar 

  269. Yakimov, M.A., Guzhavina, E.I., Lazeeva, M.S.: Solution–vapour equilibrium in calcium (cadmium) nitrate–alkali metal nitrate–water systems. Russ. J. Inorg. Chem. 14, 1011–1014 (1969)

    Google Scholar 

  270. Goloshchapov, M.V.: Reciprocal solubility in the system Ca(NO3)2–Mg(NO3)2–H2O. Izv. Voronezh. Gosudarst. Pedagog. Inst. 16, 19–31 (1955)

    CAS  Google Scholar 

  271. Frolov, A.A., Orlova, V.T., Lepeshkov, I.N.: Solubility polytherm of the system Ca(NO3)2–Mg(NO3)2–H2O. Inorg. Mater. 28, 1040–1042 (1992)

    Google Scholar 

  272. Nikolaev, V.I.: The distribution of strong bases and strong acids in saturated water solutions. Z. Anorg. Allgem. Chem. 181, 249–79 (1929)

    CAS  Google Scholar 

  273. Reinders, W.: Die reziproken Salzpaare KCl + NaNO3=KNO3 + NaCl und die Bereitung von Konversionssalpeter. Z. Anorg. Allgem. Chem. 93, 202–212 (1915)

    CAS  Google Scholar 

  274. Rüdorff, F.: Über die Löslichkeit von Salzgemischen. Ber. Deutsc. Chem. Gesellschaft 6, 482–486 (1873)

    Google Scholar 

  275. Wurmser, M.: Preparation of ammonium nitrate. Compt. Rend. 174, 1466–1468 (1922)

    CAS  Google Scholar 

  276. Cornec, E., Chretion, A.: The system sodium nitrate, sodium chloride and water. Caliche 6, 358–369 (1924)

    CAS  Google Scholar 

  277. Findlay, A., Cruickshank, J.: The reciprocal salt pair (Na, Ba)–(Cl, NO3) in aqueous solution at 20 °C. J. Chem. Soc., 316–318 (1926)

  278. Sheludko, M.K., Kulish, N.F.: Tr. Dnepropetrovsk. Khimii Tekhnol. Inst. Vyp. 5, 201 (1956), cited in: Ref. [305], p. 175

    Google Scholar 

  279. Bursa, S., Kitowska, M.: Liquid–solid equilibrium in the NaNO3–NaCl–HNO3–HCl–H2O system. Przemysl Chem. 47, 103–106 (1968)

    CAS  Google Scholar 

  280. Straszko, J., Kowalczyk, R.: Liquid–solid equilibrium in the NaNO3–NaCl–HNO3–HCl–H2O system. Przemysl Chem. 53, 97–99 (1976)

    Google Scholar 

  281. Soch, C.A.: Fractional crystallization. J. Phys. Chem. 2, 43–50 (1898)

    Google Scholar 

  282. Kritschewski, I., Izkowitsch, R.K.: Das reziproke Salzpaar Ca(NO3)2+2KCl→2KNO3+CaCl2 bei −10 °C. Z. Anorg. Allgem. Chem. 215, 103–104 (1933)

    Google Scholar 

  283. Bodlaender, G.: Über die Löslichkeit einiger Stoffe in Gemischen von Wasser und Alkohol. Z. Physik. Chem. 7, 308–322 (1891). Über die Löslichkeit von Salzgemischen in Wasser. Z. Physik. Chem. 7, 358–366 (1891)

    Google Scholar 

  284. Touren, C.: Solubility of a mixture of salts having a common ion. Compt. Rendus Hebd. Seances Acad. Sci. 131, 259 (1900)

    Google Scholar 

  285. Armstrong, H.E., Eyre, J.V.: Studies in the processes operative in solutions. XI. The displacement of salts from solution by various precipitants. Proc. Roy. Soc. London (A) 84, 123–135 (1911)

    ADS  CAS  Google Scholar 

  286. Tanaka, H.: Preparation of potassium nitrate and alumina by double decomposition of potassium chloride and aluminum nitrate. I. The system 3KCl+Al(NO3)3→3KNO3+AlCl3. Kogyo Kagaku Zasshi 33, 488–492 (1930)

    CAS  Google Scholar 

  287. Benrath, A., Braun, A.: Über die Löslichkeit von Salzen und Salzgemischen in Wasser bei Temperaturen oberhalb von 100 °C. II. Z. Anorg. Allgem. Chem. 244, 348–358 (1940)

    CAS  Google Scholar 

  288. Zhang, L., Gui, Q., Lu, X., Wang, Y., Shi, J., Lu, B.C.-Y.: Measurement of solid-liquid equilibria by a flow-cloud-point method. J. Chem. Eng. Data 43, 32–37 (1998)

    CAS  Google Scholar 

  289. Ehret, W.F.: Ternary systems CaCl2–Ca(NO3)2–H2O (25 °C), CaCl2–Ca(ClO3)2–H2O (25 °C), SrCl2–Sr(NO3)2–H2O (25 °C), KNO3–Pb(NO3)2–H2O (0 °C). J. Am. Chem. Soc. 54, 3126–3134 (1932)

    CAS  Google Scholar 

  290. Matsuo, T., Takeda, A.: Studies on brine obtained by the ion exchange membrane method. II. Crystallizing areas of potassium chloride, carnalite, and other salts in equilibrium system of brine produced by ion exchange membrane method. Nippon Kaisui Gakkaishi 25, 129–141 (1971)

    CAS  Google Scholar 

  291. d’Ans, J., Bertsch, A., Gessner, A.: Untersuchungen über Salzsysteme ozeanischer Salzablagerungen. Kali 9, 148–154 (1915)

    CAS  Google Scholar 

  292. Kayser, E.: Substitution factors for dissimilarly saturated solutions of potassium chloride and sodium chloride. Kali 17, 1–9, 37–42 (1923)

    Google Scholar 

  293. Serowy: Die Polythermen der Viersalzpunkte des Chlorkaliumfeldes im quinären System ozeanischer Salzblagerungen; ihre teilweise Nachprüfung und Vervollständigung bis zu Temperaturen über 100°. Kali 17, 345–350 (1923)

    Google Scholar 

  294. Pelsha, A.D.: Handbook of Experimental Data of Salt Solubilities, Quaternary and More Complex Systems, vol. 2. Khimia, Leningrad (1975)

    Google Scholar 

  295. Ilinskii, V.P., Varypaev, N.A., Gitterman, K.E., Shmidt, N.E.: Trudy Solyanoi Laboratory Akademii Nauk SSSR 7, 10 (1936), cited in Ref. [165], p. 302

    Google Scholar 

  296. Van’t Hoff, J.H.: Zur Bildung der ozeanischen Salzablagerungen. Sitzungsber. Preuss. Acad. Wissen., Lichtenstein, pp. 232–235 (1905)

  297. Igelsrud, I., Thompson, T.G.: Equilibria in the saturated solutions of salts occurring in sea water. II. The quaternary system MgCl2–CaCl2–KCl–H2O at 0 °C. J. Am. Chem. Soc. 58, 2003–2009 (1936)

    CAS  Google Scholar 

  298. Assarsson, G.O., Balder, A.: The poly-component aqueous systems containing the chlorides of Ca++, Mg++, Sr++, K+ and Na+ between 18 and 93 °C. J. Phys. Chem. 59, 631–633 (1955)

    CAS  Google Scholar 

  299. Khitrova, N.N.: Physicochemical investigation of a four-component reciprocal aqueous solution of sodium and potassium chlorides and nitrates. Izvest. Sekt. Fiz. Khim. Anal., Inst. Obsh. Neorg. Khim., Akad. Nauk S.S.S.R. 27, 344–357 (1956)

    CAS  Google Scholar 

  300. Etard, M.: Recherches expérimentales sur les solutions saturées. Ann. Chim. Phys. 3, 275–288 (1894)

    CAS  Google Scholar 

  301. Karsten: Ann. der Chem. U. Pharm. Suppl. 3, 170 (1865), cited in Ref. [305], p. 1124

    Google Scholar 

  302. Ritzel, A.: Die Krystalltracht des Chlornatriums in ihrer Abhängigkeit vom Lösungmittel. Z. Kristallographie Mineral 49, 152–192 (1911)

    Google Scholar 

  303. Babenko, A.M.: Study of solubility in the system Na+, K+||Cl, NO 3 –H2O. Russ. J. Appl. Chem. 48, 1820–1824 (1975)

    Google Scholar 

  304. Bergman, A.G., Nagornyi, G.I.: Polytherm of the reciprocal system of magnesium and potassium chlorides and nitrates (the conversion of magnesium nitrate). Bull. Acad. Sci. U.R.S.S., Classe Sci. Math. Nat., Ser. Chim. No. 1, 217–228 (1938)

  305. Silcock, H.L.: Solubilities of Inorganic and Organic Compounds, Ternary and Multicomponent Systems of Inorganic Substances, vol. 3, Part 2. Pergamon, Oxford (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Anderko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruszkiewicz, M.S., Palmer, D.A., Springer, R.D. et al. Phase Behavior of Aqueous Na–K–Mg–Ca–Cl–NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling. J Solution Chem 36, 723–765 (2007). https://doi.org/10.1007/s10953-007-9145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9145-2

Keywords

Navigation