Abstract
This study measures the osmotic coefficients of {xH2SO4 + (1−x)Fe2(SO4)3}(aq) solutions at 298.15 and 323.15 K that have ionic strengths as great as 19.3 mol,kg−1, using the isopiestic method. Experiments utilized both aqueous NaCl and H2SO4 as reference solutions. Equilibrium values of the osmotic coefficient obtained using the two different reference solutions were in satisfactory internal agreement. The solutions follow generally the Zdanovskii empirical linear relationship and yield values of a w for the Fe2(SO4)3–H2O binary system at 298.15 K that are in good agreement with recent work and are consistent with other M2(SO4)3–H2O binary systems.
Similar content being viewed by others
References
Nordstrom, D.K., Alpers, C.N.: Geochemistry of acid mine waters. Rev. Econ. Geol. 6A, 133–160 (1999)
Plumlee, G.S.: The environmental geology of mineral deposits. Rev. Econ. Geol. 6A, 71–116 (1999)
Van Breeman, N.: Genesis, morphology and classification of acid sulfate soils in coastal plains. Soil Sci. Soc. Am. Spec. Pub. No. 10, 95–108 (1982)
Joeckel, R.M., Ang Clement, B.J., VanFleet Bates, L.F.: Sulfate-mineral crusts from pyrite weathering and acid rock drainage in the Dakota Formation and Graneros Shale, Jefferson County, Nebraska. Chem. Geol. 215, 433–452 (2005)
Rawlings D.E.: Biomining: Theory, Microbes & Industrial Processes. Springer-Verlag, Berlin (1997)
Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., Blowes, D.W.: Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ. Sci. Technol. 34, 254–258 (2000)
Alpers, C.N., Nordstrom, D.K.: Geochemical evolution of extremely acid mine waters at Iron Mountain California-Are there any lower limits to pH? Proc. 2nd Intl. Conf. on the Abatement of Acidic Drainage CANMET, Ottawa, Canada 2, 324–342 (1991)
Cathles L.M.: Attempts to model the industrial scale leaching of copper-bearing mine waste. Environmental Geochemistry of Sulfide Oxidation, ACS Symposium Series 550, 123–131 (1994)
Platford, R.F.: Experimental methods: Isopiestic. Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Eaton, FL, Vol. 1, 65–79 (1979)
Holmes, H.F, Mesmer, R.E.: Isopiestic studies of sulforic acid at elevated temperatures. Thermodynamic properties. J. Chem. Thermodyn. 24, 317–328 (1992)
Clegg, S.L. Milioto, S., Palmer, D.A.: Osmotic and activity coefficients of aqueous (NH4)2SO4 as a function of temperature, and aqueous (NH4)2SO4–H2SO4 mixtures at 298.15 and 323.15 K. J. Chem. Eng. Data 41, 455–467 (1996)
Archer, D.G.: Thermodynamic properties of the sodium chloride + water system. II. Thermodynamic properties of NaCl(aq), NaClċ2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)
Krumgalz, B.S., Pogorelsky, R., Pitzer, K.S.: Volumetric properties of single aqueous electrolytes from zero to saturation concentration at 298.15°K represented by Pitzer’s ion-interaction equations. J. Phys. Chem. Ref. Data 25, 663–689 (1996)
Pitzer, K.S., Peiper, J.C., Busey R.H.: Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13, 1–102 (1984)
Rogers, P.S.Z., Pitzer, K.S.: Volumetric properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 11, 15–81 (1982)
Silvester, L.F., Pitzer, K.S.: Thermodynamics of electrolytes. 8. High-temperature properties, including enthalpy and heat capacity, with application to sodium chloride. J. Phys. Chem. 81, 1822–1828 (1977)
Clegg, S.L., Rard, J.A., Pitzer, K.S.: Thermodynamic properties of 0–6 molċkg-1 aqueous sulfuric acid from 273.15 to 328.15 K. J. Chem. Soc. Faraday Trans. 90, 1875–1894 (1994)
Pitzer, K.S., Roy, R.N., Silvester, L.F.: Thermodynamics of electrolytes. 7. Sulfuric acid. J. Am. Chem. Soc. 99, 4930–4936 (1977)
Rard, J.A., Habenschuss, A., Spedding, F.H.: A review of the osmotic coefficients of aqueous sulfuric acid at 25°C. J. Chem. Eng. Data 21, 374–379 (1976)
Staples, B.R.: Activity and osmotic coefficients of aqueous sulfuric acid at 298.15 K. J. Phys. Chem. Ref. Data 10, 779–798 (1981)
Rumyantsev, A., Hageman, S., Moog, H.C.: Isopiestic investigation of the systems Fe2(SO4)3H2SO4 H2O, FeCl3H2O, and Fe(III)–(Na, K, Mg, Ca)ClnH2O at 298.15 K. Z. Phys. Chem. 218, 1089–1127 (2004)
Majima, H., Awakura, Y.: Water and solute activities of H2SO4Fe2(SO4)3H2O and HCl3FeCl3H2O solution systems: Part I. Activities of water. Metall. Trans. B. 16B, 433–439 (1985)
Dickson, A.W., Wesolowski, D.J., Palmer, D.A., Mesmer, R.E.: Dissociation constant of bisulfate in aqueous sodium chloride solutions to 250°C. J. Phys. Chem. 94, 7978–7985 (1990)
Rush, R.M., Johnson, J.S.: Osmotic coefficients of synthetic seawater solutions at 25 °C. J. Chem. Eng. Data 11, 590–592 (1966)
Söhnel, O., Novotný, P.: Densities of Aqueous Solutions of Inorganic Substances. Elsevier, Amsterdam (1985)
de Laeter, J.R., Böhlke, J.K., De Bièvre, P., Hidaka, H., Peiser, H.S., Rosman, K.J.R., Taylor, P.D.P.: Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure Appl. Chem. 75, 683–800 (2003)
Zdanovskii, A.B.: Trudy Solvanoi Laboratorii 6 Akad. Nauk SSSR (1936)
Clegg, S.L., Seinfeld J.H.: Improvement of the Zdanovskii-Stokes-Robinson model for mixtures containing solutes of different charge types. J. Phys. Chem. A 108, 1008–1017 (2004)
Yamauchi, C., Sakao, H.: Determination of water and solute activities in the H2SO4–In2(SO4)3–H2O system. Trans. Jap. Inst. Metals 28, 327–335 (1987)
Yamauchi, C., Fujisawa, T., Sakao, H.: Thermodynamic properties of Ga2(SO4)3–H2SO4–H2O Solution System. Trans. Jap. Inst. Metals 29, 150–159 (1988)
Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of aqueous Lu2(SO4)3 at 25 °C. J. Solution Chem. 19, 525–541 (1990)
Robinson, R.A., The osmotic and activity coefficient data of some aqueous salt solutions from vapor pressure measurements. J. Am. Chem. Soc. 59, 84–90 (1937)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Velázquez-Rivera, M., Palmer, D.A. & Kettler, R.M. Isopiestic Measurement of the Osmotic Coefficients of Aqueous {xH 2 SO 4 + (1− x)Fe 2 (SO 4 ) 3 } Solutions at 298.15 and 323.15 K. J Solution Chem 35, 1699–1730 (2006). https://doi.org/10.1007/s10953-006-9091-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-006-9091-4